Liquid Detergents (Surfactant Science Series) - PDF Free Download (2024)

Pageaa

LiquidDetergents

Pageab

SURFACTANTSCIENCESERIES CONSULTINGEDITORS MARTINJ.SCHICK Consultant FREDERICKM.FOWKES (1915­1990) NewYork,NewYork 1.NonionicSurfactants,editedbyMartinJ.Schick(seealsoVolumes19, 23,and60) 2.SolventPropertiesofSurfactantSolutions,editedbyKozoShinoda(see Volume55) 3.SurfactantBiodegradation,R.D.Swisher(seeVolume18) 4.CationicSurfactants,editedbyEricJungermann(seealsoVolumes34, 37,and53) 5.Detergency:TheoryandTestMethods(inthreeparts),editedbyW.G. CutlerandR.C.Davis(seealsoVolume20) 6.EmulsionsandEmulsionTechnology(inthreeparts),editedbyKennethJ. Lissant 7.AnionicSurfactants(intwoparts),editedbyWarnerM.Linfield(see Volume56) 8.AnionicSurfactants:ChemicalAnalysis,editedbyJohnCross(outofprint) 9.StabilizationofColloidalDispersionsbyPolymerAdsorption,TatsuoSato andRichardRuch(outofprint) 10.AnionicSurfactants:Biochemistry,Toxicology,Dermatology,editedby ChristianGloxhuber(seeVolume43) 11.AnionicSurfactants:PhysicalChemistryofSurfactantAction,editedbyE. H.Lucassen­Reynders(outofprint) 12.AmphotericSurfactants,editedbyB.R.BluesteinandCliffordL.Hilton (seeVolume59) 13.Demulsification:IndustrialApplications,KennethJ.Lissant(outofprint) 14.SurfactantsinTextileProcessing,ArvedDatyner 15.ElectricalPhenomenaatInterfaces:Fundamentals,Measurements,and Applications,editedbyAyaoKitaharaandAkiraWatanabe 16.SurfactantsinCosmetics,editedbyMartinM.Rieger(outofprint) 17.InterfacialPhenomena:EquilibriumandDynamicEffects,ClarenceA. MillerandP.Neogi 18.SurfactantBiodegradation:SecondEdition,RevisedandExpanded,R.D. Swisher 19.NonionicSurfactants:ChemicalAnalysis,editedbyJohnCross

Pageac

20.Detergency:TheoryandTechnology,editedbyW.GaleCutlerandErik Kissa 21.InterfacialPhenomenainApolarMedia,editedbyHans­FriedrichEicke andGeoffreyD.Parfitt 22.SurfactantSolutions:NewMethodsofInvestigation,editedbyRaoul Zana 23.NonionicSurfactants:PhysicalChemistry,editedbyMartinJ.Schick 24.MicroemulsionSystems,editedbyHenriL.RosanoandMarcClausse 25.BiosurfactantsandBiotechnology,editedbyNaimKosaric,W.L. Cairns,andNeilC.C.Gray 26.SurfactantsinEmergingTechnologies,editedbyMiltonJ.Rosen 27.ReagentsinMineralTechnology,editedbyP.SomasundaranandBrij M.Moudgil 28.SurfactantsinChemical/ProcessEngineering,editedbyDarshT.Wasan, MartinE.Ginn,andDineshO.Shah 29.ThinLiquidFilms,editedbyI.B.Ivanov 30.MicroemulsionsandRelatedSystems:Formulation,Solvency,andPhysical Properties,editedbyMauriceBourrelandRobertS.Schechter 31.CrystallizationandPolymorphismofFatsandFattyAcids,editedby NissimGartiandKiyotakaSato 32.InterfacialPhenomenainCoalTechnology,editedbyGregoryD. BotsarisandYuliM.Glazman 33.Surfactant­BasedSeparationProcesses,editedbyJohnF.Scamehorn andJeffreyH.Harwell 34.CationicSurfactants:OrganicChemistry,editedbyJamesM.Richmond 35.AlkyleneOxidesandTheirPolymers,F.E.Bailey,Jr.,andJosephV. Koleske 36.InterfacialPhenomenainPetroleumRecovery,editedbyNormanR. Morrow 37.CationicSurfactants:PhysicalChemistry,editedbyDonnN.Rubingh andPaulM.Holland 38.KineticsandCatalysisinMicroheterogeneousSystems,editedbyM. GrätzelandK.Kalyanasundaram 39.InterfacialPhenomenainBiologicalSystems,editedbyMaxBender 40.AnalysisofSurfactants,ThomasM.Schmitt 41.LightScatteringbyLiquidSurfacesandComplementaryTechniques, editedbyDominiqueLangevin 42.PolymericSurfactants,IrjaPiirma 43.AnionicSurfactants:Biochemistry,Toxicology,Dermatology.Second Edition,RevisedandExpanded,editedbyChristianGloxhuberandKlaus Künstler 44.OrganizedSolutions:SurfactantsinScienceandTechnology,editedby StigE.FribergandBjörnLindman 45.Defoaming:TheoryandIndustrialApplications,editedbyP.R.Garrett 46.MixedSurfactantSystems,editedbyKeizoOginoandMasahikoAbe 47.CoagulationandFlocculation:TheoryandApplications,editedby BohuslavDobiáš

Pagead

48.Biosurfactants:Production•Properties•Applications,editedbyNaim Kosaric 49.Wettability,editedbyJohnC.Berg 50.FluorinatedSurfactants:Synthesis•Properties•Applications,ErikKissa 51.SurfaceandColloidChemistryinAdvancedCeramicsProcessing,edited byRobertJ.PughandLennartBergström 52.TechnologicalApplicationsofDispersions,editedbyRobertB.McKay 53.CationicSurfactants:AnalyticalandBiologicalEvaluation,editedbyJohn CrossandEdwardJ.Singer 54.SurfactantsinAgrochemicals,TharwatF.Tadros 55.SolubilizationinSurfactantAggregates,editedbySherrilD.Christian andJohnF.Scamehorn 56.AnionicSurfactants:OrganicChemistry,editedbyHelmutW.Stache 57.Foams:Theory,Measurements,andApplications,editedbyRobertK. Prud'hommeandSaadA.Khan 58.ThePreparationofDispersionsinLiquids,H.N.Stein 59.AmphotericSurfactants:SecondEdition,editedbyEricG.Lomax 60.NonionicSurfactants:PolyoxyalkyleneBlockCopolymers,editedby VaughnM.Nace 61.EmulsionsandEmulsionStability,editedbyJohanSjöblom 62.Vesicles,editedbyMortonRosoff 63.AppliedSurfaceThermodynamics,editedbyA.W.NeumannandJanK. Spelt 64.SurfactantsinSolution,editedbyArunK.ChattopadhyayandK.L. Mittal 65.DetergentsintheEnvironment,editedbyMilanJohannSchwuger 66.IndustrialApplicationsofMicroemulsions,editedbyConxitaSolansand HironobuKunieda 67.LiquidDetergents,editedbyKuo­YannLai ADDITIONALVOLUMESINPREPARATION SurfactantsinCosmetics:SecondEdition,RevisedandExpanded,editedby MartinM.RiegerandLindaRhein PowderedDetergents,editedbyMichaelS.Showell EnzymesinDetergency,editedbyJanH.vanEe,OnnoMisset,andErikJ. Baas

Pagei

LiquidDetergents editedby Kuo­YannLai Colgate­PalmoliveCompany NewYork,NewYork

M ARCELDEKKER,INC. N EWYORK•BASEL

Pageii

LibraryofCongressCataloging­in­PublicationData Liquiddetergents/editedbyKuo­YannLai. p.cm.—(Surfactantscienceseries;v.67) Includesindex. ISBN0­8247­9391­9(hardcover:alk.paper) 1.Detergents.I.Lai,Kuo­Yann.II.Series. TP992.5.L561996 668'.14—dc20 96­44787 CIP Thepublisheroffersdiscountsonthisbookwhenorderedinbulkquantities. Formoreinformation,writetoSpecialSales/ProfessionalMarketingatthe addressbelow. Thisbookisprintedonacid­freepaper. Copyright©1997byMarcelDekker,Inc.AllRightsReserved. Neitherthisbooknoranypartmaybereproducedortransmittedinanyform orbyanymeans,electronicormechanical,includingphotocopying, microfilming,andrecording,orbyanyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher. MarcelDekker,Inc. 270MadisonAvenue,NewYork,NewYork10016 Currentprinting(lastdigit): 1098765432 PRINTEDINTHEUNITEDSTATESOFAMERICA

Pageiii

Preface Liquiddetergentsplayveryimportantrolesinourdailylivesforpersonalcare, householdsurfacecare,andfabriccare.Weusetheseproductsjustabout everydayfromwashingourhands,hair,dishes,clothestocleaningvarious surfacesinourhomes.Inthelastthreedecades,liquiddetergentshavegained anincreasingpopularitylargelyduetotheconveniencetheyofferoverother forms.Duringthisperiod,therehavebeensignificantadvancesinbothscience andtechnologyinthisarea.Numerouspapershavebeenpublishedin professionaljournalsandtrademagazines,thousandsofpatentshavebeen granted,andlargenumberofnewproductshavebeenintroducedtothe marketplace.Theobjectiveofthisvolumeistoprovideacomprehensive reviewoftheseadvances. Thisisthefirstbookspecificallydevotedtothereviewanddiscussionofliquid detergents.Itisintendedprimarilyforscientistsandengineersworkinginthe detergentindustryandthedetergentrawmaterialsindustryaroundtheworld. Researchersinotherindustries—suchasthoseinthepetroleumindustrywho areinvolvedinenhancedoilrecoveryandthoseintextileprocessing—aswell asthoseinacademiawillalsousefulinformationinthisvolume. ConsistentwiththeoverallaimoftheSurfactantScienceSeries,thisvolume coversboththeoreticalandappliedaspectsofliquiddetergents.Therearea totalof14chapters.Chapter1givesaconciseaccountofthepast,present, andfutureofliquiddetergents.Therestofthevolumeisstructuredintotwo parts—theoriesandapplications.Chapters2–6presentanin­depthdiscussion oftheoriesofcommonimportancetomostliquiddetergentsystemsincluding hydrotropy,phaseequilibria,rheology,polymericstabilizers,andnonaqueous surfactantsystems.Chapters7–13coverthetechnologicalaspectsofliquid detergentsinvariouspracticalapplicationsfromlight­andheavy­dutyliquid

Pageiv

detergents,liquidautomaticdishwasherdetergents,liquidsoaps,shampoos andconditioners,andfabricsoftenerstospecialtyliquidhouseholdsurface cleaners.Chapter14focusesonthemanufacturingaspectsofliquiddetergents. Itishopedthatthisvolumewillnotonlyserveasahandyreferenceto researchersbutalsostimulatemanynewinnovationsinthedetergentfield. IwanttotakethisopportunitytoexpressmysincerethankstoColgate­ PalmoliveCompanyforpermittingmetoundertakethisprojectandtothe leadershipteamatit*GlobalTechnologyDivisionfortheirstrongsupport. Specialthanksalsogotoallthecontributorsofthisbooknotonlyforsharing theirexpertiseandextensiveexperiencebutalsoforpatientlyenduringthe unavoidabledelaysofamulti­authoredbook. IwouldalsoliketoexpressmygratitudetoDr.MartinSchick,theconsulting editorofthisseries,forhisvaluablesuggestions,encouragementandpatience; andtothepublisher,MarcelDekkerInc.,inparticular,Ms.AnitaLekhwani, AssociateAcquisitionsEditor,andMr.JosephStubenrauch,Production Editor,fortheirpatienceandinvaluablehelp. Finally,Iwanttothankmywife,Jane,andmychildren,Melody,Amy,and Peterfortheirenduranceandsupportinthelastseveralyears.Itwaswiththeir loveandunderstandingthatIwasabletodevotenumerouseveningsand weekendstocompletethistask. KUO­YANNLAI

Contents Preface Contributors 1.LiquidDetergents:AnOverview ArnoCahn 2.Hydrotropy StigE.FribergandChrisBrancewicz 3.PhaseEquilibria GuyBroze 4.RheologyofLiquidDetergents R.S.Rounds 5.PolymericStabilizersforLiquidDetergents MadukkaraiK.NagarajanandHalAmbuter 6.NonaqueousSurfactantSystems MarieSjöbergandTorbjörnWärnheim 7.Light­DutyLiquidDetergents Kuo­YannLai,ElizabethF.K.McCandlish,andHarryAszman 8.Heavy­DutyLiquidDetergents AmitSachdevandSanthanKrishnan 9.LiquidAutomaticDishwasherDetergents PhilipA.Gorlin,Kuo­YannLai,andNagarajDixit

10.ShampoosandConditioners ClarenceR.Robbins 11.LiquidSoaps RichardE.Reever 12.FabricSofteners AlainJacquesandCharlesJ.Schramm,Jr. 13.SpecialtyLiquidHouseholdSurfaceCleaners KarenWisniewski 14.ManufactureofLiquidDetergents R.S.Rounds Index

Pagevii

Contributors HalAmbuterSpecialtyChemicalDivision—ProductDevelopment,The BFGoodrichCompany,Brecksville,Ohio HarryAszmanResearchandDevelopment,GlobalTechnology,Colgate­ PalmoliveCompany,Piscataway,NewJersey ChrisBrancewiczDepartmentofChemistryandCenterforAdvanced MaterialsProcessing,ClarksonUniversity,Potsdam,NewYork GuyBrozeAdvancedTechnologyDepartment,Colgate­PalmoliveResearch andDevelopment,Inc.,Milmort,Belgium ArnoCahnArnoCahnConsultingServices,Inc.,PearlRiver,NewYork NagarajDixitResearchandDevelopment,GlobalTechnology,Colgate­ PalmoliveCompany,Piscataway,NewJersey StigE.FribergDepartmentofChemistryandCenterforAdvancedMaterials Processing,ClarksonUniversity,Potsdam,NewYork PhilipA.GorlinResearchandDevelopment,GlobalTechnology,Colgate­ PalmoliveCompany,Piscataway,NewJersey AlainJacquesFabricCare,Colgate­PalmoliveResearchandDevelopment, Inc.,Milmort,Belgium SanthanKrishnanResearchandDevelopment,GlobalTechnology,Colgate­ PalmoliveCompany,Piscataway,NewJersey

Pageviii

Kuo­YannLaiGlobalMaterialsandSourcing(Asia­PacificDivision),Global Technology,Colgate­PalmoliveCompany,NewYork,NewYork ElizabethF.K.McCandlishResearchandDevelopment,Global Technology,Colgate­PalmoliveCompany,Piscataway,NewJersey MadukkaraiK.NagarajanSpecialtyChemicalDivision—Product Development,TheBFGoodrichCompany,Brecksville,Ohio RichardE.ReeverRichardReeverandAssociates,Inc.,Minnetonka, Minnesota ClarenceR.RobbinsResearchandDevelopment,GlobalTechnology, Colgate­PalmoliveCompany,Piscataway,NewJersey R.S.RoundsFluidDynamics,Inc.,Piscataway,NewJersey AmitSachdevResearchandDevelopment,GlobalTechnology,Colgate­ PalmoliveCompany,Piscataway,NewJersey CharlesJ.Schramm,Jr.ResearchandDevelopment,GlobalTechnology, Colgate­PalmoliveCompany,Piscataway,NewJersey MarieSjöbergInstituteforSurfaceChemistry,Stockholm,Sweden TorbjörnWärnheim*InstituteforSurfaceChemistry,Stockholm,Sweden KarenWisniewskiResearchandDevelopment,GlobalTechnology, Colgate­PalmoliveCompany,Piscataway,NewJersey *Currentaffiliation:Pharmacia&Upjohn,Stockholm,Sweden

1 LiquidDetergents:AnOverview ARNOCAHN ArnoCahnConsultingServices,Inc.,PearlRiver,NewYork I.Introduction II.Light­DutyLiquids III.Heavy­DutyLiquids IV.LiquidAutomaticDishwasherDetergents V.ShampoosandConditioners VI.LiquidSoaps VII.FabricSofteners VIII.SpecialtyLiquids IX.ManufactureandRawMaterials References

I.Introduction Liquiddetergentsareconvenienceproducts.Comparedwithpowdereddetergen dissolvemorerapidly,particularlyincoldwater,theygeneratelessdust,andthey dose.Itisnotsurprising,therefore,thatliquidformsofhouseholdcleaningprodu developedbymanufacturers. Withtheexceptionoffabricsoftenersandshampoos,thesolidformofcleaningp precededtheliquidform.Thisistrueofmanualandautomaticdishwashing,laund generalpersonalwashingproducts.Asaresult,

Page2

thetechnicalhistoryofliquiddetergentsistoalargeextentoneofemulatingthe performancefeaturesofthepowdermodels. Allotherfactors—soil,waterhardness,andtemperature—beingequal, cleaningperformanceisafunctionoftheconcentrationandtypeoftheactive ingredientsthataredeliveredintothecleaningbath.Almostbydefinition,the liquidforminvolvesadilutionoftheactiveingredients,thatis,agivenvolume ofapowdereddetergentcangenerallydelivermoreactiveingredientsthanan equalvolumeofaliquiddetergent.Thetasktoprovideperformanceequality withpowdersisthereforenotinsignificant.Itismadeevenmoredifficultwhen inorganicsaltsareusedtoprovidecertainspecificperformancefeatures.These saltsoftenposeproblemsofsolubilityandcompatibilitywiththeorganic surfactantsoftheformulation.Finally,formulationproblemsaremostsevere whentheactivecomponentislessstableinanaqueousenvironmentthanina solidmatrix. Theseconsiderationsapplyprincipallytotheheavy­dutyliquids,thelargestof theliquiddetergentcategories,buttheyalsocomeintoplaywithliquid automaticdishwasherdetergents. Thesituationisdifferentforproductsdesignedforlight­duty,handdishwashing andforsofteningfabrics.Theseliquidsaregenerallysuperiorinperformanceto theirpowderedcounterpartstotheextentthattheseexistedinthefirstplace. Thisisalsotrueofshampooformulations,forwhichthereisnocommonsolid equivalent. Thischaptergivesanessentiallyhistoricaloverviewofthevariouscategories. Historically,soap­basedshampoosandtheliquidpotassiumoleate formulationsfoundinwashroomdispenserswereprobablytheearliest commercialliquiddetergents. II.Light­DutyLiquids Onatrulycommercialscale,theageofliquiddetergentscanbesaidtohave beguninthelate1940swhenthefirstliquiddetergentformanualdishwashing wasintroduced.Thisliquidconsistedessentiallyofanonionicsurfactant: alkylphenolethoxylate.Inuse,itproducedonlyamoderateamountoffoamin thedishpan. Thisprovedtobeaseriousdetriment.Tobesuccessful,consumerproduct innovationsmustshowalargemeasureofsimilaritytotheconventional productstheyareintendedtodisplace.Inthiscase,copiousfoamwasthe essentialperformanceattributethatneededtobeasclosetothatwhichcould begeneratedfrompowdersandsoapchips. Therequirementforcopiousfoamlevelshasatechnicalbasisandismorethan amereemotionalreactiontoavisualphenomenon.Withsoap­basedproducts, theappearanceofapermanentfoamsignaledthatallhardwaterionshad

Page3

beenremovedbyprecipitationascalciumandmagnesiumcarboxylatesand thatexcesssoapwasnowavailabletoactasasurfactant. Thefoamingrequirementsforlight­dutyliquidsweremetbythenextseriesof productintroductionsintheearly1950s.Theseformulationswerebasedon high­foaminganionicsurfactants.Theywerecapableofmaintainingadequate levelsoffoamthroughoutthedishwashingprocessandpossessedsufficient emulsifyingpowertohandletheloadofgreaseinthedishpantoproduce “squeakyclean”dishware. Inpractice,thiswasaccomplishedbyamixtureofanionicsurfactants— alkylbenzenesulfonate,alcoholethersulfate,andalcoholsulfates—sometimes incombinationwithnonionicsurfactants.Tomaintainfoamstability, alkanolamideswereincorporated.Insomeproducts,alkanolamideswere subsequentlyreplacedbylong­chainamineoxides. Theformulationoflight­dutyliquidsovercameasecondmajortechnicalhurdle inherentintheformulationofallliquiddetergents:tomaintainhom*ogeneityin thepresenceofsignificantlevels,about30%ormore,ofmoderatelysoluble organicsurfactants.Couplingagentsorhydrotropeswereintroducedforthis purpose,specificallytheshort­chainalkylbenzenesulfonates,suchasxylene­, cumene­andtoluenesulfonates,aswellasethanol. Light­dutyliquidshavemaintainedasignificantmarketvolumetothisday.This issomewhatsurprisingbecausetheprimaryfunctionoftheseproductsisto washdishes.Innewerhomesandapartments,thisfunctionhasbeentaken overbyautomaticdishwashingmachinesandthespecialdetergentsdeveloped foruseinthesemachines.Bothhaveexpandedgreatlysincetheirintroduction inthelate1950s.Somepartofthepersistenceoflight­dutyliquidsisnodoubt aresultoftheiruseasfine­fabricdetergentsforwashingdelicatelaundryitems byhand. Overtheyears,minoradditiveshavebeenincorporatedintolight­dutyliquid formulations,principallytosupportmarketingclaimsforspecialperformance features.Foraperiodoftimeinthe1960s,antimicrobialswereincorporated intosomeproductsdesignedtopreventsecondaryinfectionsofbrokenskin duringdishwashing.Afteranabsenceofsome30years,antimicrobialsare againappearinginlight­dutyliquids.Theirreturnisnodoubtconnectedwith increasingawarenessofthepossiblepresenceofbacteriainfoods,especially inchicken.Othercommercialproductscontainedproteinasaskinbenefit agent. Improvingtheconditionofskinasaresultofexposuretolight­dutyliquid solutionsprovedtobetechnicallyverydifficult.Exposuretimesarerelatively short,about20minutes,threetimesadayunderthebestofcirc*mstances,and useconcentrationsarelow,about0.15%.Thecombinationoflowuselevels andshortexposuretimesmakesitdifficulttoovercometheadverseeffectsof skinexposuretootherinimicalinfluences,suchasdryairinheatedhomesand stronghouseholdchemicals.

Page4

Generallyspeaking,light­dutyliquidcompositionsarerelativelynonirritatingto skin.Mildnesstoskincouldthereforebeclaimedbytheseproductswith reasonablejustification.Duringthe1960sand1970s,thecosmeticimagewas furtherenhancedbyopacifyinglight­dutyliquidsandconferringuponthema lotion­likeappearance.Inmorerecentyears,dishwashingefficacy—effective emulsificationofgrease—combinedwithpersistentfoam,hasbeenthemain objectiveoftechnicalproductimprovement. Inlinewithcleaningefficacy,solidparticleshavealsobeenincorporatedinto somelight­dutyliquidformulationswiththeobjectiveofraisingthe effectivenessoftheproductsinremovingsolidcaked­onsoilfromdishes. III.Heavy­DutyLiquids Oncelight­dutyliquidproductshadestablishedanattractivemarketposition, thedevelopmentofheavy­dutyliquidscouldnotbefarbehind.Here,too,the requirementofsimilaritytotheexistingproductshadtobemet,inthiscase powderedlaundrydetergents.Thepowderedlaundrydetergentsofthe1950s werecharacterizedbythepresenceofhighlevelsofbuilder,specifically pentasodiumtripolyphosphate(STPP),andrelativelylowlevels,about15%, ofsurfactants.Informulatingaheavy­dutyliquid,therefore,themajortechnical objectivewastofindwaysofstablyincorporatingmaximumlevelsofbuilder salts. Thefirstcommerciallyimportantheavy­dutyliquidwasintroducedintothe U.S.marketin1958.Theproductwasbuiltwithtetrapotassium pyrophosphate,whichismoresolublethanSTPP.Evenso,inthepresenceof asurfactantsystemofsodiumalkylbenzenesulfonateandamixtureof alkanolamides,theformulationcouldtolerateonly15–20%oftetrapotassium pyrophosphate. Incorporationofanantiredepositionagent,anotheringredientpresentin laundrypowders,provedtobeanothermajortechnicalhurdle. Antiredepositionagents,generallycarbohydratederivatives,suchas carboxymethylcellulose,hadbeenintroducedintolaundrypowderstoprevent greyingafteranumberofrepeatwashcycles. Inoneproduct,thepatentedsolutiontothisproblemconsistedofbalancing twoantiredepositionagentsofdifferentspecificgravitysuchthatthetendency ofonetoriseinthefinishedproductwascounterbalancedbythetendencyof thesecondagenttosettleoutoftheproduct[1]. Eventhoughthefirstmajorcommercialheavy­dutyliquidcompositionwas formulatedwithabuildersystem,theconcentrationsofbuildersandsurfactants itdeliveredintothewashingsolutionwerelowerthanthoseprovidedbythe conventionaldetergentpowders.Asaliquid,however,theproductpossessed auniqueconvenienceinuse,particularlyforfull­strengthapplicationtospecific soiledareasofgarments.Conveniencewasaccompaniedbyeffectiveness,

Page5

becausetheconcentrationofindividualingredientsintheneatformapproached thatofanonaqueoussystem. Thisisillustratedbythefollowingconsideration.Recommendedwashing productusedirectionsleadtowashingsolutionswithaconcentrationofabout 0.15%ofthetotalproduct.Atasurfactantlevelofabout15%intheproduct, thefinalconcentrationofsurfactantinthewashliquorisabout0.0225%.The efficacyofsurfactantinprovidingobservablecleaningatsuchlow concentrationatteststothepoweroftheinterfacialphenomenathatunderlie theactionofsurfactants. Bycontrast,aheavy­dutyliquidcontaining20%surfactant,appliedfull strength,leadstoasurfactantconcentrationof20%,somethreeordersof magnitudelargerthanintheearliercase.Atthese—almostnonaqueous— concentrations,solutionphenomena,suchasthoseoperatinginnonaqueous drycleaning,arelikelytoberesponsibleforcleaningefficacy.Thepopularity ofheavy­dutyliquidsforpretreatingstainswasthusbasednotonlyon conveniencebutalsoonrealperformance. Inthemid­1960s,thebranched­chainsurfactantswerereplacedbymore biodegradableanalogsinalllaundryproducts.Inheavy­dutyliquids,sodium alkylbenzenesulfonate,derivedfromanalkylbenzenewithatetrapropyleneside chain,wasreplacedbyitsstraight­chainanalog,referredtoassodiumlinear alkylbenzenesulfonate(LAS). Theconversiontomorebiodegradablesurfactantswaspromptedbythe appearanceoffoamsonriver.Theappearanceofexcessivealgalgrowthon stagnantlakespromptedasecondenvironmentaldevelopmentthatprovedto bebeneficialtotheexpansionofheavy­dutyliquids:thereductionor eliminationofthesodiumtripolyphosphatebuilderfromlaundrydetergents. Restrictionsontheuseofphosphateinlaundrydetergentswereimposedbya numberofstatesandsmalleradministrativeagenciesbeginningin1970. Becausenototallyequivalentphosphatesubstitutewasimmediatelyavailable, theperformanceofheavy­dutylaundrypowderswasadverselyaffected.As thewhole­washperformancedifferentialbetweenpowdersandliquids narrowed,theusageofheavy­dutyliquidsforthewholewashexpanded, markedlysoinareaswherephosphatehadbeenbanned. Inthefirstnonphosphateversionofthecommercialproduct,phosphatewas replacedbyNTA(trisodiumnitrilotriacetate),apowerfulbuilder,comparable tothecondensedphosphatesinitsefficacyinsequesteringcalciumionsinthe washingsolution.Becauseofreportsofadverseteratogeniceffectsin laboratoryexperiments,thisbuilderwaswithdrawnfromthemarketlatein 1971.Itwasreplacedbysodiumcitrate,anenvironmentallymoreacceptable butinherentlylesspowerfulcalciumsequestrant.Atthesametime,surfactant levelswereincreasedbyafactorofabout3.Whathadhappenedinpractice (ifnotintheory)wasthathigherlevelsofsurfactantshadbeenintroducedto compensate

Page6

forthelossinthebuildingcontributiontowashingefficacyprovidedearlierby phosphate. The1970ssawtheintroductionofseveralheavy­dutyliquidsthatcarriedthis substitutiontoitsultimate,beingtotallyunbuiltandconsistingsolelyof surfactantsatlevelsrangingfrom35%toabout50%.Thesecompositions weredistinguishedfromlight­dutyliquidsbythepresenceofsurfactantswith longerhydrophobesand,ofcourse,bythepresenceoflaundryauxilaries,such asfluorescentwhitenersandantiredepositionagents.Withtheexceptionofa fewproductsbasedonsurfactantsonly,mostheavy­dutyliquidsare formulatedwithamixtureofanionicandnonionicsurfactants,withanionics predominating. ThesteadyexpansionofphosphatebansacrosstheUnitedStates, accompaniedbyanexpandingperceptionoftheconvenienceandefficacyof heavy­dutyliquids,ledtoanexpansionofthisproductcategoryinthetwo decadesbeginning1970.Thisexpansionwasfuelednotonlybythepublicity thatnormallyaccompaniestheintroductionofnewbrandsbutalsobysome significantproductimprovements.Thefirstofthesetoappearlateintheearly 1980swastheincorporationofproteolyticand,later,amylolyticenzymes.In liquiddetergents,withtheirrelativelyhighlevelofwater,proteolyticenzymes mustbestabilizedtopreventdegradationduringstorage[2,3]. Enzymesmakeasignificantanddemonstrablecontributiontowashingefficacy, notonlyintheremovalofenzyme­specificstains,suchasgrassandblood,by proteinases,butalsoinanincreaseinthelevelofgeneralcleanliness.Thelatter effectistheresultoftheabilityofaproteolyticenzymetoactupon proteinaceouscomponentsofthematrixthatbindssoiltofabric. EnzymeshadbeenusedindetergentpowdersintheUnitedStatesandEurope asearlyas1960.TheyweresubsequentlywithdrawnintheUnitedStates,but notinEurope,whentherawproteinaseofthetimeprovedtohaveanadverse effectonthehealthofplantworkers.Improvementsintheenzymes,specifically encapsulation,eliminatedtheirdustinessandmadeitpossibletousethese materialsindetergentplantswithoutadversehealtheffects. Thesecondproductinnovationwastheincorporationofafabric­softening ingredient.Again,apowderedversionofa“softergent”thathadbeenonthe marketforsometimeservedasthemodelproduct.Inthepowder,the mutuallyantagonisticanionicsurfactantsandcationicsofteningingredients couldbekeptapartsothattheywouldnotneutralizetheirindividualbenefitsin thewashcycle.Inaliquid,thisprovedtobeunattainable.Asaresult,the choiceofsurfactantsinliquidsoftergentswasrestrictedtononionics. Althoughtheincorporationofenzymesandfabricsoftenersstrengthenedthe marketpositionofheavy­dutyliquids,itdidnotsolvethebasicproblemof limitedgeneraldetergencyperformanceinnormalwashing.Asnotedearlier, heavy­dutyliquidscameclosetotheperformanceofthefirstnonphosphate laundrypowders.Withtime,however,theperformanceofnonphosphate laundry

Page7

powdersimprovedasnewsurfactantsystemsandnewnonphosphatebuilders, notablyzeoliteincombinationwithpolycarboxylatepolymers,were introduced. Thelastdecadesawapartialconversionofsomemajorbrandsfromunbuiltto builtcompositions.Thefirstoftheseproductsemployedabuildersystem consistingofsodiumcitrateincombinationwithpotassiumlaurate[2].Inthe mostrecentversions,potassiumlauratehasbeenreplacedbyasmall­molecule etherpolycarboxylatesequestrant,amixtureofsodiumtartratemonosuccinate andsodiumtartratedisuccinate[3].Inthesebuiltproducts,thestabilizationof enzymesistechnicallymoredifficultthaninunbuiltsystems.Acombinationof low­molecular­weightfattyacids,low­molecular­weightalcohols,andverylow levelsoffreecalciumionsprovedtobethesolutiontothisproblem. Attheheightoftheirpopularity,heavy­dutyliquidsaccountedfor40–45%of theheavy­dutylaundryproductscategoryintheUnitedStates.Not unexpectedly,themarketshareofheavy­dutyliquidshasdeclinedsomewhat asnewdevelopmentsinlaundrypowders,notablytheintroductionofa bleachingfunctionandofconcentrated,higherdensitydetergentpowders,has reinvigoratedthisproductcategory. Iftheemulationoftheperformanceoflaundrypowdersistocontinueinthe future,andthereisnoreasontodoubtthistrend,theincorporationofastain removalandbleachingfunctionintoheavy­dutyliquidsshouldbethenext technicalimprovementintheseproducts.Indeed,thefirstproductclaiminga bleachingingredienthasmadeitsappearanceatthiswriting. Inlaundrypowders,effectivebleachinghasbeenattainedinthelastdecadeby incorporatingacombinationofsodiumperborateandanactivator.InEurope, sodiumperboratehasbeenusedformanydecadesasamajor(about20%) ingredientoflaundrydetergents.Attemperaturesnear100°C,sodium perboratealoneprovideseffectivebleaching.Aswashingtemperatureshave decreasedoverthepast15years,aneedhasarisenforanactivatorthatreacts withsodiumperboratetoformunstableperoxyintermediates,whichinturncan effectbleachingatthelowertemperatures. Topreventprematurereactionwiththeoxygensource,usuallysodium perborate,theactivatorscaneasilybeencapsulatedinpowdereddetergent products.Inanaqueousenvironment,thisistechnicallymuchmoredifficult. Oneapproachtowardtheincorporationofactivatedperborateintoheavy­duty liquidsistoremovetheaqueousenvironmentandformulatenonaqueous systems[5].Toattainproducthom*ogeneity,theseformulationsrequire significantlevels,about20%,oforganicsolvents,suchaspropyleneglycol and/orethanol.Nonaqueoussystemshavebeenpatentedextensively, particularlyinEurope,butsofarhavenotbeenreflectedinmajornewproduct introductions. Nonaqueousliquidscouldbeconsidered“superconcentrated”andassuchare intunewiththerecenttrendtoconcentratedlaundrypowders.However,the

Page8

needfororganicsolventscombinedwiththehighlevelofsurfactantspresentin theseformulationsrepresentsaburdenontheenvironmentandaddstothe costofsuchproducts.InEurope,specificallyinGermany,dischargeintothe environmentisaseriousproblemthatislikelytoinhibitexpansionofboth aqueousandnonaqueousheavy­dutyliquids. Suchsuperconcentrated,nonaqueousheavy­dutyliquidshavenotmadean appearanceinthemarketplace,but“concentrated”productshavebeen introduced,inconsonancewithageneraltrendtowardcompactioninitiatedby theintroductionofcompactorconcentrateddetergentpowders.Twotechnical approachestowardmoreconcentratedproductshavebeenfollowed.Thefirst, originatinginEurope,resultsinanopaqueproductcontainingrelativelyhigh levelsofbuildersaltsinsuspension.Astablesuspensionisachievedbysalting outthesurfactantsystembyanexcessofelectrolyte(whichincludesthebuilder salts)toformlamellarorspheruliticsurfactantaggregatesthatarecapableof suspendingbuilderinexcessofitssolubilityintheformulation.Therelatively highbuilderlevelscontributetoimprovedwhole­washperformance,especially intheEuropeanliquids,whichcontainsodiumtripolyphosphateasthebuilder [4]. Asecondapproachtowardcompactionyieldsclear,isotropicliquidsthat appeartobepreferredbyU.S.consumers.Technically,thisinvolvesadifficult balancingactbecauseconventionalhydrotropingagents,suchascumeneor xylenesulfonates,maylosetheirefficacyinasystemenrichedinorganic components.Asthesystembecomesmoreorganicinnature,higherlevelsof solvents,suchasethanol,arerequiredincombinationwithneutralizationof acidicfunctionalities(LASorcitricacid)withalkanolamines,suchasmono­ andtriethanolamine.Ingeneral,thephasestabilityofthesystembecomesmore sensitivetochangesinactivelevelsbecausethestableoperatingregionofthe phasediagramisnarrowedrelativetomoredilutesystems. IV.LiquidAutomaticDishwasherDetergents Thedevelopmentofliquidautomaticdishwashingdetergentscontinuedthe patternofemulatingthecompositionofsolidproductsinaliquidform.Liquid automaticdishwashingdetergentswerefirstintroducedin1986atatimewhen themarketpenetrationofheavy­dutyliquidlaundrydetergentswasona pronouncedupswing,withoutanupperlimitinsight.Aliquidversionofthe automaticdishwashingdetergentpowdersthereforeappearedtobeattractive andtimely. Theseliquiddetergentproductsaresuspensionsratherthantruesolutions. Nonetheless,thetechnicalproblemsofformulatingthickbutflowable suspensionsareconsiderable.Again,theprimarytaskwastoincorporateas muchof

Page9

theimportantingredients—principallybuildersinthiscase—aspossible.Even approachingthelevelsofsodiumtripolyphosphateandsodiumcarbonate presentinthepowderedversionsgivesrisetoaverythicksuspensionthatcan becoaxedoutofthecontaineronlywithconsiderabledifficulty.Makingthe suspensionthixotropicbyincorporationoftheappropriateclaymaterialsand, optionally,polycarboxylatepolymersprovidesasolutiontotheflowproblem [6].Beforeusebytheconsumer,theproductmustbeshakentoreduce viscosityandpromoteflow. Anothermajortechnicalproblemistheinadequatestabilityinanaqueous environmentofchlorinatedisocyanurates,theorganicchlorinesourceusedin powders.Sodiumhypochloritesatisfiesthestabilityrequirementsbut,onthe otherhand,reactswiththesurfactanttypesusedinpowderformulations.The specificationofsurfactantsforuseinliquidautomaticdishwashingproducts thereforeincludesnotonlytheuniversalrequirementoflowfoamlevels(and ideallythecapabilityofdestroyingthefoamsgeneratedduringthedishwashing processbyproteinaceoussoil)butalsostabilitytosodiumhypochlorite.Toa largeextent,theserequirementshavebeenmetbythealkyldiphenyloxide disulfonatesurfactants. Insomecommercialliquidautomaticdishwashingformulations,thesurfactantis omittedaltogether.Inpractice,thisisapossiblesolutionbecausedetergencyin hardsurfacecleaning,suchasdishwashing,isaccomplishedprimarilybythe phosphatebuilder.However,intheabsenceofsurfactantthereislittle defoamingofnaturalsoilsandnocontributiontothe“sheeting”ofwaterjust beforedrying.Suchsheetingminimizestheformationofwaterspotsondishes thathavegonethroughthedishwashingprocess. V.ShampoosandConditioners Shampoosareliquiddetergentsdesignedtocleanaparticularsubstrate,thatis, hairandscalp.Theybearsomeresemblancetohanddishwashingliquidsinthat theyareessentiallyunbuiltsurfactantsolutions. Estheticproperties,suchasappearance(clearorpearlescent),viscosity,and fragrance,areperhapsmoreimportantinthisproductgroupthaninanyother productcategorydiscussedinthisbook.Developmentandmaintenanceofan adequatefoamlevelisatonceaperformancepropertyandalsoaesthetic propertyinthatitisnoticedandevaluatedbytheuser. Shampoosalmostalwayscontainadditiveswithactivityinareasotherthan cleaningandfoaming,designedtoprovidespecificperformanceattributesthat confersuchpropertiesasluster,manageabilitytohair,andeliminationof dandruff. Theconcentrationinuseofshampoosisestimatedasnear8%.Thisisanorder ofmagnitudegreaterthantheuseconcentrationsoflaundryanddishwashing

Page10

liquids.Mildnesstoskinandlowirritationtoeyesarethereforeimportant requirementsforshampoos. Salts,generallysodiumbutalsotriethanolammonium,oflong­chainalcohol sulfatesandalcoholethersulfatesarethemostwidelyusedsurfactantsin shampooformulations.Alkanolamidesactasviscosityregulatorsaswellas foamstabilizers. Themostgeneralbenefitsassociatedwiththeuseofconditionersisareduction instaticchargeonhairandhenceagreatereaseofcombing,thatis,improved manageability.Cationic,quaternarysurfactantsandcationicpolymersprovide thesebenefitsasaresultofelectrostaticadsorptiononhair.Inanalogywith “softergents,”themutualantagonismofthecationicconditionersandthe anionicsurfactantsthatprovidetheprimaryshampoofunctionofremovingoily soilpresentsaprobleminthedevelopmentofconditioningshampoos.Some anionicsurfactants,notablycarboxylatednonionics,havebeenfoundtobe moretoleranttowardcationicsurfactantsthanthealcoholsulfatesoralcohol ethersulfates. Thehistoryofshampoosislong,beginningwellbeforethedaysofsynthetic surfactants.Theadventofthelattergreatlyexpandedoptionsforthe formulatorandatthesameimprovedtheestheticsoftheproducts. VI.LiquidSoaps Liquidsoapsisthepopulardescriptiongiventothisproductcategory.This definitionistechnicallynotquiteaccurate.Theseproductsmaycontainsome fattyacidsalts,buttheyarepredominantlysolutionsof(synthetic)surfactants ratherthanofsoap. Apartfromthepotassiumoleatesolutionsmentionedearlier,thehistoryof liquidsoapsisrelativelyshort.Itoffersarelativelyrepresentativeillustrationof thedevelopmentofaproductcategoryorsubcategoryintheU.S.market.The firstliquidsoapwasfirstintroducedbyasmallishU.S.companyinthelate 1970s.TheproductprovedtobesufficientlyattractivetoU.S.consumersto captureasignificantmarketshareinthepersonalwashingcategory.Inshort order,manycompetitivebrandswereintroducedthatsaturatedthefieldand,it seemed,stuntedthegrowthofthecategory.Inthemostrecentstage,thefield reducedtofewer,largerbrandsandthecategoryhasreachedarelativelyfirm levelfromwhichslowandsteadygrowthcanbeanticipated. Liquidsoapscanbestoredanddispensedwiththeconveniencecharacteristic ofallliquids.Beyondthesegenericattractions,theypossessanesthetic advantageoverconventionalpersonalwashingbarsinthatduringuse,and particularlyduringoccasionaluse,theyarenotsubjecttothevisualand physicaldeteriorationinappearanceofpersonalwashingbars.Storedinan aqueous

Page11

matrix(residualwaterfromwashing),barstendtosloughandcracktovarious degrees.Thecracks,inturn,cancollectsoil,whichleadstoalessthan attractiveappearance. Liquidsoapscanbeconsideredsuccessorstothepotassiumoleatesolutions notedearlier.Present­dayproducts,however,areformulatedprincipallywith nonsoapsurfactants,including ­olefinsulfonate,alkylsulfates,andalkylether sulfates.Someproducts,however,stilldependonpotassiumsaltsoffattyacids astheprincipalconstituent. Asinotherpersonalproducts,specialtysurfactantsalsofindapplicationin liquidsoapformulations.Theseincludealkylphosphateesters,sarcosinates, andsulfosuccinates.Asexpectedfromconsumerproductsthatcontactskin,a numberofspecialtyingredientscanbefoundinproductsmakingspecific marketingclaims.Theseingredientsincludeglycerin,aloevera,and antimicrobialphenolics.Smalllevelsofcalciumsequestrants,suchasEDTA, andsodiumcitrate,arealsopresent. VII.FabricSofteners Fabricsoftenersorconditioners,asthenameimplies,areproductsthatconfer softnesstowashedtextilegoods.TheyfirstmadetheirappearanceintheU.S. marketinthe1950s.Themajoractiveingredientinfabricsoftening compositionsisacationicsurfactant,adi(long­chain)alkyldimethylammonium halideormethosulfate.Thepositivechargeonthenitrogenatom,combined withthehighmolecularmassassociatedwiththelongalkylchains,ensured adsorptionofthecompoundonthesubstrateandasoftfeeloftheconditioned fabric. Incontrasttomostotherliquiddetergentcategories,fabricsoftenersarenot truesolutions.Thelong­chainquaternarysaltsdonotdissolvetoforman isotropicsolution. Cottonistheprimarytargetsubstrateforfabricsofteners.Onrepeated washing,thefinestructureofcottonatthesurfaceofthefabricbecomes dendritic,thatis,manyfinespikesofcottonfibersareformedthatprotrude fromthesurfaceofthetextile.Electrostaticrepulsionholdsthesespikesin place,butinthepresenceofthecationicsofteningagent,theyaresmoothed out.Syntheticfabrics,suchaspolyesterandnylon,arenotsubjecttothis phenomenon.Muchofthe“softening”withthesesubstratesisprovidedbythe mechanicalflexingactioninthedrier.However,themechanicalactioncausesa buildupofstaticelectricityonsyntheticfabrics,whichcanresultinconsiderable sparkingwhengarmentsmadeofsyntheticfibersarewithdrawnfromaclothes drier.Fortunately,theagentsthatconfersofteningtocottonfibersalsoreduce thebuildupofstaticchargesonsynthetics.

Page12

Inaconventionalfabricsoftenerformulation,thelevelofthequaternary surfactantisabout5%.Lowconcentrationsof“levelingagents”canalsobe present.Thesematerials,oftennonionicsurfactants,assistinuniformdeposition ofthesofteningquaternary.Inaddition,abufferingsystemisusedtoassurean acidicpH.Finally,asolvent,suchasisopropanol,presentatlevelsofabout 10–15%,assuresaviscosityrangesuitableforeasydispensingfromthebottle. Asanadditivetoimproveeaseofironingandtoreducethewrinkling tendenciesofthetreatedtextile,siliconederivatives,suchaspolydimethyl siloxanes,havebeenincorporatedintoliquidfabricsoftenercompositions[7]. Asanalternativesofteningquaternary,imidazoliniumcompoundshavebeen introducedwithaclaimofsuperiorrewetperformance.Thiscanbeauseful performancefeaturebecausewithcontinuingusageandbuildupofcationicson thesubstrate,thewaterabsorptionofthesubstratecanbeadverselyaffected. Theuseofanionicdetergentsinthemainwashcanmitigatethisphenomenon becausetheanionicsurfactantcancombinewiththecationicfabricsoftenerto formacombinationthatisremovedaspartoftheoilonthefabric. Sincethelate1970s,concentratedfabricsoftenerproductshavebeen marketedintheUnitedStatesandinEurope.Intheseproducts,the concentrationofthesofteningcationicisaboutthreetimesashighasinthe conventionalproducts. Inthemostrecentpast,theenvironmentalacceptabilityofthedialkyldimethyl ammoniumquaternaryhasbeenquestioned,particularlyinWesternEurope.In response,thenatureofthealkylgrouphasbeenmodifiedandamoderately extensivepatentliteraturehasarisencoveringthesemodifications.Forthemost part,thepatentedstructuresincludeanesterlinkage,generallyatthethird carbonatom,whichmakesforamorerapidbiologicalbreakdownofthe parentcompound[8]. Theliquidfabricsoftenersjustdescribedarealsoreferredtoasrinsecycle softeners.Thereasonisthattheseproductsareaddedtotherinsecycleofthe washwhennoorverylittleofanyanionicresiduefromthedetergentusedin themainwashcanbeexpectedtobepresent.Asinalltextiletreatments,fabric softeningandconditioningareinherentlymoreeffectivewhentheyarecarried outinaliquidbath,thatis,whenarinsecyclesoftenerisemployed.Addinga producttotherinsecyclesoftenerrepresentsameasureofinconvenienceto theuser.Beforespecialportsfortheautomaticadditionofrinsecyclebecame awidespreadfeatureofwashingmachines,theuseofarinsecyclesoftener usuallyrequiredanappropriatelytimedsecondtriptothewashingmachine. Itisnotsurprising,therefore,thatalternativemeansofsofteningproductswere soughtanddeveloped.Here,however,theusualsituationwasreversed,inthat nowgreaterconveniencerestedwith“solid”products,thatis,flexiblesheets treatedwithafabricsofteningcompositionsthatperformedtheirsoftening

Page13

andstaticreducingfunctionsintheclothesdrierratherthaninthewashing machine. Softergents,mentionedearlierinconnectionwithheavy­dutyliquids,canbe viewedasrepresentingtheultimateinconvenience.Theseproductsrequireno additionaleffortbeyondlaundering.Asnoted,thisconvenienceisboughtat somecostinboththewashingandsofteningperformance. VIII.SpecialtyLiquids Inadditiontothemajorliquiddetergentcategoriesdiscussedearlier,several morespecializedliquidproductcategorieshavebeenmarketedforanumber ofyears.Intermsoffunction,character,andformulationingredients,thisisthe mostfragmentedgroupofproductsconsideredhere. Thelargestgroupcomprisesthe“general”hardsurfacecleaners.Inaddition, thereisalargevarietyofspecialtieswithinspecialtyliquids,suchaswindow cleaners,bathroomcleaners,andtoiletbowlcleaners. Themajorcategoryofgeneralhardsurfacecleanershasevolvedintotwo principaltypes:all­purposecleanersandsolventcleaners.All­purposeliquids areessentiallydiluteversionsofheavy­dutyliquids.Again,asolidproductthat requireddissolutionbeforeusewasthemodelfortheliquidcleaners.Early versionsoftheliquidcleanerswerebasedonlowlevelsoftetrapyrophosphate builderandsurfactantand,additionally,auxiliaries,suchasalkanolamideanda sufficientamountofhydrotrope,tokeepthecompositionhom*ogeneous.For sanitizingproducts,theauxiliariesincludecompoundswithantimicrobial efficacy,suchaspineoilorantimicrobialcationics.Withtheadventof phosphatebans,sodiumcitratehasemergedasthemostcommonphosphate replacementintheseproducts. Forincreasedefficacyinremovingparticulatesoiladheringtothesubstrate, somegeneral­purposecleanersincorporateasoftabrasive,suchascalcium carbonate.Theresultingproductsaremilkysuspensionswithabout40–50% ofsuspendedcalciumcarbonate[9].Keepingthesecompositions hom*ogeneousthroughextendedstorageisatechnicalchallenge.Oneapproach tosolvingthisproblemistoprovide“structure”totheliquidmedium. Surfactantspresentasalamellarphasearecapableofstructuringliquids.Most recently,acompositioncontainingbothsoftabrasiveandbleachhasbeen introduced[10]. Thesehardsurfacecleanershavenotescapedtherecenttrendtoward compaction.Here,theapproachtoward“ultra”productsisbasedontheuse ofshorterchainsurfactantsthatcombinethesoilpenetrationefficacyof solventswiththegreaseemulsificationoftraditionalsurfactants.These surfactantsarealsosaidtorequirenobuildersbecausetheirperformanceisnot affectedbywaterhardness.

Page14

Solventcleanersaregenerallyfreeofbuildersaltsanddependfortheirefficacy onsolvent­typecompounds,suchasglycolethers.Solventcleanersareless effectiveonparticulatesoil,suchasmudtrackedintothehousefromthe outside,buttargettheirefficacyagainstoilysoils,particularlyonoilysoilon modernplasticsurfaces. Windowcleaningproductsconstituteaspecialtywithinthesolventcleaner category.Becauseanyresidueleftonglassafterdryingleadstostreakingoran otherwiseundesirableappearance,theseproductsarehighlydiluteaqueous solutionscontainingextremelylowsurfactantlevels—mostoftennonionic surfactants—andacombinationofglycolethersandisopropylalcoholasthe solventsystem. Bathroomcleaners,sometimesreferredtoastub­tile­and­sinkcleaners, represent“subspecialty”liquidsthatmustbeeffectiveagainstacombinationof sebumsoildepositedfromskindetritusduringbathingorshoweringandthe hardnessdepositsderivingfromhardwateritselforfromitsinteractionwith soap,thatis,calciumsaltsoffattyacids.Onesubsetinthisgroupdependson acidsforremovingthiscombination.Theacidscontainedintheproductsrange fromthestronghydrochloricandphosphoricacidstomoderatelystrong organicacids,suchasglycollicacid.Otherproductsareformulatedatabasic pH,incorporatingancalciumsequestrants,suchasthesodiumsaltof ethylenediaminetetraaceticacid(EDTA),surfactants,and,inthecaseof productswithdisinfectingaction,antimicrobialquaternaries. Likebathroomcleaners,toiletbowlcleanersareformulatedtoremovemineral deposits,principallyironsalts,thatformanunsightlydepositatthewaterlevel. Again,acidsranginginstrengthfromhydrochlorictocitricarefoundinthese products. Anothersubsegmentofthespecialtyliquidsisthatofthedraincleaners.These arestronglybasicproductsbasedoncombinationsofsodiumhydroxideand sodiumhypochlorite. IX.ManufactureandRawMaterials Inprinciple,themanufactureofliquidsissimple,involvingonlytheformulation ofa*generallyaqueoussolutionorsuspension.Forlightandheavy­dutyliquids, whichcontainsodiumsaltsofsurfactantacids,neutralizationcanbecarriedout insitu,thatis,asafirststepinthemixingprocess.Theheatofneutralization mustbedissipatedbeforeadditionofthemoretemperature­sensitive ingredients,suchasthefragrance.Heatmustalsobedissipatedinthe productionofproductsthatrequireheatinputtosolubilizeindividual ingredients. Therawmaterialsfortheliquidhouseholdproductsdiscussedinthisbookare relativelyfewinnumber,includingthe“workhorse”surfactants,builders,

Page15

hydrotropes,andasmallnumberofspecialfunctioningredients.Cost constraintsonthefinishedproductsareoneoftheimportantlimitingfactors. Thesituationisdifferentforthepersonalliquiddetergentsandliquidsoapsand especiallysoforshampoosandconditioners.Costconstraintsarerelaxed,and therangeofperformanceclaimsbasedonspecificanduniqueingredientsis nowverymuchexpanded.Althoughthevarietyoftheessentialsurfactantsis stillmanageable,thenumberofspecialtysurfactantsandspecialfunction ingredientsisverymuchgreater. Adetaileddiscussionoftheseingredientsisbeyondthescopeofthischapter. Detailsofthecharacteristics,properties,andmanufactureoftherawmaterials canbefoundinotherreferenceworks[11]. Inthefollowing,therawmaterialsfoundinliquiddetergentcompositionsare listedtoprovideaconvenientsummaryforfurtherreference.Forthelarge­ scalecategoriesoflight­andheavy­dutyliquids,forautomaticdishwasher detergents,andforfabricsofteners,thelistisfairlycomplete.Forspecialty liquids,shampoosandconditioners,andtoalesserextentforliquidsoaps,only limitedexamplesofspecialfunctionalingredientshavebeenselected. I.Light­dutyliquids A.Surfactants 1.Alkylbenzenesulfonate(linearalkylatesulfonate,LAS)salts 2.Alkylethersulfatesalts 3.Alkylsulfatesalts 4.Betaines 5.Alkylpolyglycosides B.Foamstabilizers 1.Fattyacidalkanolamides(mono­anddi­) 2.Alkyldimethylamineoxides C.Hydrotropes 1.Short­chainalkylbenzenesulfonates(xylenesulfonatesalts) 2.Ethanol II.Heavy­dutyliquids A.Surfactants 1.Alkylbenzenesulfonatesalts 2.Alkylethersulfatesalts 3.Alkylsulfatesalts

A.Surfactants 1.Alkylbenzenesulfonatesalts 2.Alkylethersulfatesalts 3.Alkylsulfatesalts 4.Alcoholethoxylates 5.N­methylglucamides

Page16

B.Builders 1.Sodiumcitrate 2.Sodiumsaltsoftartratemono­anddisuccinatemixture C.Hydrotropes 1.Saltsofshort­chainalkylbenzenesulfonates(xylenesulfonate, cumenesulfonate,toluenesulfonate) 2.Ethanol D.Bases:Alkanolamines E.Otherspecialfunctionalingredients 1.Enzymes(proteinase,amylase,lipase):stainremover 2.Borax(cleaningaid) 3.Sodiumformate,calciumchloride(enzymestabilizingsystem) 4.Hydrogenperoxide(bleach) 5.Propyleneglycol(solvent) III.Liquidautomaticdishwasherdetergents A.Surfactants 1.Alkyldiphenyloxidedisulfonatesalts 2.Hydroxyfattyacidsalts B.Builders: 1.Pentasodiumtripolyphosphate 2.Tetrasodiumpyrophosphate 3.Sodiumcarbonate 4.Sodiumsilicate C.Bases:Sodiumandpotassiumhydroxide D.Otherspecialfunctionalingredients 1.Sodiumhypochlorite(bleach) 2.Clay(smectite,bentonite):viscosityregulator,suspendingagent 3.Polyacrylatesodiumsalts(viscosityregulator) 4.Monostearylacidphosphate(sudsdepressant) IV.Shampoosandconditioners

2.Clay(smectite,bentonite):viscosityregulator,suspendingagent 3.Polyacrylatesodiumsalts(viscosityregulator) 4.Monostearylacidphosphate(sudsdepressant) IV.Shampoosandconditioners A.Surfactants 1.Alkylsulfatesalts 2.Alkylethersulfatesalts 3.Acylaminopropylbetaines 4. ­Olefinsulfonatesalts B.Foamstabilizers/viscosityregulators:Fattyacidalkanolamides

Page17

C.Otherspecialfunctionalingredients 1.Polyquaternium7(cationicconditioner) 2.Glycolmonostearate(opacifier) 3.Aloevera(lusterpromoter) 4.Jojoba(lusterpromoter) 5.Derivativesofhydrolyzedkeratin(skinandhairconditioner) V.LiquidSoaps A.Surfactants 1.Alcoholsulfatesalts 2.Alkylethersulfatesalts 3. ­Olefinsulfonatesalts 4.Fattyacidsalts B.Sequestrants 1.EDTA 2.Sodiumcitrate C.Foamstabilizers/viscosityregulators:Fattyacidalkanolamides D.Otherspecialfunctionalingredients 1.Phenolicantimicrobials 2.Glycerin VI.Fabricconditioners A.Surfactants 1.Dialkyldimethylammoniumhalideormethosulfatesalts 2.Monoalkyltrimethylammoniumhalidesalts 3.Alkylimidazoliniumsalts 4.Alcoholethoxylates 5.Alkyl(ethyleneoxide/propyleneoxide)nonionics B.Solvents 1.Isopropanol 2.Ethanol C.Otherspecialfunctionalingredients:Polydimethylsiloxanes(levelingagent)

B.Solvents 1.Isopropanol 2.Ethanol C.Otherspecialfunctionalingredients:Polydimethylsiloxanes(levelingagent) VII.Specialtyliquids A.Surfactants 1.Alkylbenzenesulfonatesalts 2.Alcoholsulfatesalts

Page18

3.Alkanesulfonatesalts 4.Alkylethersulfatesalts 5.Alkylphenolethoxylates 6.Alcoholethoxylates B.Builders/sequestrants 1.Sodiumcarbonate 2.Sodiumsesquicarbonate 3.Sodiumcitrate 4.EDTA C.Acids/alkalis 1.Hydrochloricacid 2.Phosphoricacid 3.Glycollicacid 4.Sodiumhydroxide 5.Sodiummetasilicate 6.Alkanolamines D.Hydrotropes:Short­chainalkylbenzenesulfonatesalts(toluene­,cumene­) E.Bases:Alkanolamines F.Otherspecialfunctionalingredients 1.Pineoil(disinfectant) 2.Benzalkoniumcationics(antimicrobials) 3.Sodiumhypochlorite(bleach) 4.Calciumcarbonate(softabrasive) 5.Alumina(suspendingaid) 6.Alkylglycolethers(solvents) 7.Isopropanol(solvent) References 1.I.ReichandH.Dallenbach,U.S.Patent2,994,665toLeverBrothers Company(1963). 2.J.C.LettonandM.J.Yunker,U.S.Patent4,318,818totheProcter&

References 1.I.ReichandH.Dallenbach,U.S.Patent2,994,665toLeverBrothers Company(1963). 2.J.C.LettonandM.J.Yunker,U.S.Patent4,318,818totheProcter& GambleCompany(1982). 3.R.D.Bush,D.S.Connor,S.W.Heinzman,andL.N.Mackey,U.S. Patent4,663,071totheProcter&GambleCompany(1987). 4.B.J.Akred,E.T.Messenger,andW.T.Nicholson,BritishPatent 2,153,839AtoAlbright&WilsonLimited(1985). 5.G.Broze,D.Bastin,andL.Laitem,U.S.Patent4,749,512toColgate­ PalmoliveCompany(1988). 6.M.JulemontandM.Marchai,BritishPatent2,116,119AtoColgate­ PalmoliveCompany(1982).

Page19

7.R.J.Dumbrell,J.P.Charles,I.M.Leclerq,R.M.A.deBakker,P.C.E. Goffinet,B.A.Brown,R.E.Atkinson,andF.E.Hardy,BritishPatent 1,549,180totheProcter&GambleCompany(1979). 8.J.C.Letton,U.S.Patent4,228,042totheProcter&GambleCompany (1980). 9.U.S.Patent4,129,527,F.P.Clark,R.C.Johnson,andJ.Topolewskito theCloroxCompany(1978). 10.C.K.Choy,F.I.Keen,A.Garabedian,andC.J.Spurgeon,U.S.Patent 4,695,394totheCloroxCompany(1987). 11.G.Barker,inSurfactantsinCosmetics(M.M.Rieger,ed.),Marcel Dekker,NewYork,1985.

2 Hydrotropy STIGE.FRIBERGandCHRISBRANCEWICZ DepartmentofChemistryandCenterforAdvancedMaterialsProcessing,Clarks Potsdam,NewYork I.Introduction II.HistoricalReview III.Fundamentals IV.CleaningandWashing V.Summary References

I.Introduction Liquiddetergentconcentratescommonlycontainhydrotropestoavoidexcessive theformulationandtoimprovetheirdetergency.Bothfunctionsrelyonthefunda propertiesofhydrotropes. Inthischapter,historicalknowledgeaboutthefunctionofhydrotropicmoleculesi reviewed,followedbyadescriptionofhydrotropicactioninliquiddetergentsusi commercialhydrotropewithanunusualstructure. II.HistoricalReview Theterm“hydrotropy”wascoinedin1916byNeuberg[1,2],whofoundthataq solutionsofcertainsaltspossessedtheabilitytoenhancethesolubilityinwaterof otherwisewater­insolublesubstances.Hefoundthatthealkalimetalsaltsofbenz salicylicacid,benzenesulfonicacidandits

Page22

manyderivatives,naphthoicacid,andvariousotherhydroaromaticacids displayedhydrotropicactivity.Inhisstudy,Neuberginvestigatedalarge numberoforganicsolutes,suchascarbohydrates,alcohols,aldehydes, ketones,hydrocarbons,esters,ethers,lipids,fats,andoils. Thesecondphaseorperiodofactivitystarted30yearslater,withanemphasis onchemicalengineeringandindustrialapplications.McKee[3]showedthat concentratedaqueoussolutionsofverysolubleneutralsaltsoforganicacids, suchassodiumbenzoate(NaB),salicylate(NaS),benzenesulfonate(NaBS), p­toluenesulfonate(NaPTS),xylenesulfonate(NaXS),cumenesulfonate (NaCS),andcymenesulfonate(NaCyS),increasedthesolubilityofawide varietyoforganicandsomeinorganiccompoundsinwater.Henotedthatmost hydrotropicsolutionsprecipitatedthesolubilizedsoluteondilutionwithwater andshowedthatthispermitseasyrecoveryofthehydrotropeforfurtheruse. Lumb[4]studiedtheternaryphasediagramsofsystemsconsistingofwater­ octanol­potassiumalkanoatesand,basedontheirsimilarities,postulatedthat thehydrotropyexhibitedbytheloweralkanoates(e.g.,butyrate)and surfactantsolubilizationwereessentiallythesamephenomenon.Ontheother hand,LichtandWieneroftheUniversityofCincinnati[5]agreedwithMcKee [3].Theyattributedtheincreaseinsolubilitytoa“salting­in”effectratherthan byasimilarityinstructuretosurfactants. Thefinalcomparisonwithsurfactantphaseequilibriawasmadetwodecades laterwhenLawrence[6],FribergandRydhag[7],andPearsonandSmith[8] presentedphasediagramsforhydrotropes.Thesephasediagrams demonstratedhydrotropicsolubilizationasanextensionofsurfactant solubilizationintolessorderedsystems. Inmoderntimes,hydrotropeshavefoundmanyapplications.Theiruseincludes thepharmaceuticalfield,withsolubilizationofdrugs,specificallytemazepam[9] andthecoronaryvasodilatornifedipine[10].Hydrotropeshaveshown promiseinenhancingtheactionofdrugswithsuchcombinationsas theophyllinewithinsulin[11]andhavebeenutilizedtoimprovetransdermal deliverysystems[12]. Inchemicalengineering,theoriginalMcGee[3]approachwasrecently continuedinsuchprocessesascatalysisandextraction[13,14].Itisalsoused inthepaperandpulpindustry[15–19]. Theapplicationinliquiddetergentsisadirectconsequenceofthefundamentals ofhydrotropicsolubilization.Hence,inthischapterwefirstdescribe hydrotropicactioningeneral,followedbyatreatmentofanunusual hydrotropicagentinthecontextofdetergency. III.Fundamentals Therearetwoessentialfeaturesofhydrotropesolubilization:comparatively largeconcentrationsofhydrotropearerequiredtoinitiatesolubilization,andthe

Page23

maximumamountsolubilizedintotheaqueoushydrotropesolutionislarge comparedwithwhatisfoundinanaqueousmicellarsolutionofasurfactant. ThesetwocharacteristicsareillustratedinFig.1[7].Thedashedlineshows thestronglyenhancedsolubilityofoctanoicacidinasodiumxylenesulfonate solutionatconcentrationsinexcessof20%byweightofthehydrotrope.The contrastbetweenasolubilityoflessthan1%forconcentrationsat15%ofthe hydrotropeandtherapidincreasetomorethan30%byweightofoctanoic acidathigherconcentrationsillustratesthetypicalpropertiesofhydrotrope­ mediated

Fig.1 Thesolubilityofoctanoicacidintoanaqueoussolutionofa hydrotropesodiumxylenesulfonate,dashedline,requires highconcentrationsofthehydrotropetoinitiatesolubilization (~20%),butthesolubilizationincreasessteeplytolargevaluesfor smallincreasesinhydrotropeconcentrationsabovethose values.Thesurfactant(sodiumoctanoate),ontheotherhand (solidline),requireslowerconcentrationstostartthe solubilization(~5%)butthemaximumsolubilizationislimited.

Page24

solubilization.Thecontrastbetweenthevaluesforthedashedandsolidlines illustratesthedistinctionofhydrotropesolubilizationfromthatbyasurfactant, inthiscasesodiumoctanoate.Thesolubilizationoftheoctanoicacidwiththe surfactantisinitiatedatamuchlowerconcentrationthanwiththehydrotrope, butthemaximumamountoftheacidsolubilizedremainsatamodestlevelof lessthan8%. Thecomparisonwithsurfactantsolubilizationoffersanimmediateexplanation forthehighconcentrationofhydrotroperequiredtoinitiatethesolubilization.It hasbeenwellknownformanyyears[20]thatasurfactantwithashorter hydrocarbonchainhasanincreasedvalueofthecriticalmicellization concentration(CMC).TheCMCistheconcentrationatwhichsolubilization begins. Hence,thehighhydrotropeconcentrationforinitialsolubilization(Fig.1)is reasonableandexpectedbecausethephenylgroupisanalogoustoonlythree tofourcarbonsinastraightchain.Theveryhighhydrotropeconcentrationfor initialassociationofthemoleculesandtheaccompanyingsolubilizationare givenarationalexplanation. Themuchhighervaluesofsolubilizedmaterialforthehydrotropein comparisonwiththevaluesforthesurfactant(Fig.1)areunderstoodfirstafter amorecompletephasediagramisconsideredforthetwocompounds.Figure 2revealstheessentialfeaturesofthetwosolubilizedmechanisms.Increased amountsofoctanoicacidinthesurfactant­watersolutiongiverisetoseveral phases,fourofwhichareillustratedinFig.2.AreaainFigure2consistsofan aqueoussolutionofnormalmicelles,thestructureofwhichisshowninFig.3a. Athighersurfactantconcentrationsaliquidcrystallinephasecontaining cylindricalsurfactantassociationsstackedinaclosepackedhexagonalarrayis formed.ThisregionislabeledareadinFig.2,anditsstructureisshowninFig. 3d. Atincreasingconcentrationsofoctanoicacid,alamellarliquidcrystalis formed,asshowninFig.2,regionc.Thisphasehasastructureof“infinite” bilayersofsurfactantinterlacedwithlayersofwater,asshowninFig.3c. Afurtherincreaseinthecontentofthesolubilizateresultsintheformationofan octanoicacidsolutionofinversemicelles,whichcontainwatersolubilizedin theircores.ThisregionisshownasareabinFig.2,andthestructureofan inversemicelleisdepictedinFig.3b.Theessentialfeatureofthephase diagramisthepresenceofthelamellarliquidcrystalregion,whichseparates thenormalmicellarsolution(Fig.3a)fromthesolutionofinvertedmicelles(Fig. 3b). Thisisinstrongcontrasttotheconditionswithhydrotrope(Fig.2)forwhich onlyonesolubilityregion(Fig.2)ofsignificanceisfoundwithincreasing

Page25

Fig.2 Whenwaterandoctanoicacid(solidlines)arecombinedwith sodiumoctanoate,fourphasesareobtained:aandbare micellarsolutions(Fig.3aandb),andcanddareliquid crystals(Fig.3candd).Thecombinationwithahydrotrope sodiumxylenesulfonate,dashedline,givesasingleareaof anisotropicsolution(e).

Fig.3 Theamphiphileorganizationinanormalmicelle(a), inaninversemicelle(b),inalamellarliquidcrystal (c),andinaliquidcrystalofhexagonallypacked amphiphilecylinders(d).

Page26

amountsofoctanoicacid.Asshownbythedashedline,acontinuousisotropic liquidphasereachesfromtheaqueouscornerto80%octanoicacidwithout interruption. Withthisinformation,thereasonforthe“anomalously”highsolubilizationby thehydrotropeisobvious.Itssolubilityregionisnotinterruptedbythe formationofaliquidcrystal;theshiftfromwatercontinuoustooctanoicacid continuoussolutionnowtakesplacewithoutaphasetransition. Itisessentialtorealizethatthephasechangeswhenoctanoicacidisaddedto thewater­sodiumoctanoatecombinationarenotaquestionofsolubility.The octanoicacidiscertainlysolubleintheliquidcrystallinephase,regionc(Fig.2) andinfinitelysoinitsownsolution,regionb(Fig.2).Thedifferentphases foundinthesurfactantsystemareonlyamatterofmolecularorganizationofthe systemcomponents,notoftheirmutualsolubility. Thesimilaritybetweenthesolubilizationactionofsurfactantandhydrotrope (Fig.4)isnowimmediatelyevident.Thesurfactantandhydrotropesolubility regionsareanalogouswiththesurfactantrequiringlowerconcentrations becauseofitsgreaterhydrophobiccharacter.Hence,thedifferencebetween regionsinFig.2isnotadistinctioninsolubility;numerousphasesinthe surfactantsysteminFig.2arearesultofpackingrestrictionsimposedbythe lengthofthehydrocarbonchains.Thetransitionbetweennormalandinverse micellesrequiresalamellarpackingfortwohydrocarbonschainsofeight carbonseach.AsthestructuresinFig.5suggest,acombinationofthebulky hydrotropeandthelonghydrocarbonchainofasolubilizatedoesnotstabilizea lamellarpacking,andthetransitionfromnormaltoinverseassociation structurestakesplaceviadisorderedaggregates,asshowninFig.4b. IV.CleaningandWashing Theseprocessesaremainlyconcernedwiththeremovalof“oilydirt,” dependingtoahighdegreeonthecomplexphaseequilibriaencounteredinthe surfactant­water­“oilydirt”system[21]. Twotreatmentshavebeenpublished[22,23]ontheactionofanontraditional hydrotropestructureinsuchsystems.Insteadoftheusualbulkymolecule(Fig. 5),thiscompound[24]isadicarboxylicacidofconsiderablechainlength(Fig. 6). Thefundamentalphenomenahavebeeninvestigatedoftheactionofthis hydrotropeinaliquidcleaner.Insuchanapplication,thehydrotropefunctions intheformulationconcentratebypreventinggelation.Inaddition,underthe diluteconditionsinthewashingprocess,thehydrotropefacilitatestheremoval ofoilydirtfromthefabric.Inthefollowingsectionthesetwofunctionsare relatedtothephaseequilibriaofwater­amphiphilesystems. Theformulaforthedicarboxylicacid(Fig.6)hasahydrophiliclipophilic balancesimilartothatofoctanoicacid,buttheinfluenceofthetwoacidson

Page27

Fig.4 Thetotalsolubilityregioninthesurfactantsystem(a)issimilar tothatofthehydrotrope(b);theonlydifferenceisthatthe changefromnormaltoinverseassociationstructurestakesplace viaanorderedlamellarliquidcrystal(aphaseseparation)in thesurfactantcase(a),andinthehydrotropesystemthe transitiontakesplaceoverdisorderedaggregateswithinthe solution(b).

amphiphilicassociationstructuresisentirelydifferent,ascanbeseeninFig.7 [25].Theoctanoicacidcausestheformationofaliquidcrystalwhenaddedto asolutionofwaterinhexylamine.Thesizeofthelamellarliquidcrystalline regionislarge(Fig.7a).Additionofthedicarboxylicacid,ontheotherhand, givesnoliquidcrystal,anditmaybeconcludedthatit*actionincon­

Page28

Fig.5 Thereasonforthedifferenceintransitionstructures,Fig.4,isthatthe car­boxylicacidandthesurfactant(octanoicacidandsodiumoctanoate) areofsimilarchainlengthandalamellarpackingiseasily stabilized.Thedifferenceinstructureinthehydrotropeandfatty acidcombination(sodiumxylenesulfonateandoctanoicacid),on theotherhand,resultsinadisorderedstructure.

centratedsystemsissimilartothatofthecommonshort­chainhydrotropes despiteitslonghydrocarbonchain(Fig.7b). ActivityindilutesystemswasinvestigatedusingamodelsystemfromUnilever [26]inwhichoctanolmimickstheoilydirt.Alamellarliquidcrystalwas presentatlowconcentrationoftheoilydirt[23],intheabsenceofthe hydrotrope(Fig.8).Afteradditionofthehydrotrope,theamountofmodeloily dirtsolubilizedwithoutliquidcrystalformationwasgreatlyenhanced.Clearly, thishydrotropefunctionsnotonlyasadestabilizerofliquidcrystalsinthe formulationconcentratebutalsoasadestabilizerofliquidcrystalsunderthe diluteconditionsofthewashingprocess.

Fig.6 Thedicarboxylicacidhydrotropehasanelongatedstructure.

Page29

Fig.7 Thecombinationofwaterandhexylaminewithoctanoic acid(a)givesahugeareaofalamellarliquidcrystal (LC);thecombinationwiththedicarboxylicacidinFig.6 resultsinanisotropicliquidsolutiononly(b).

Themolecularmechanismbehindthedestabilizationofliquidcrystalswas clarifiedlater[27].Thespecificdisorderingbroughtforwardbythehydrotrope inthewater­surfactant­oilydirtliquidcrystalwasfirstdetermined,followedby aninvestigationintotheconformationofthediacidmoleculeitself[22]. Theorderofthehydrocarbonchainsinaliquidcrystalisdirectlyobtainedfrom nuclearmagneticresonance(NMR)spectrausingamphiphileswithdeuteriated chains.EachmethylenegroupandtheterminalmethylgroupgiveaNMR signaldoublet,andthedifferenceinfrequencybetweenthetwosignalsis proportionaltotheorderparameter[27].Usingalamellarliquidcrystalmodel systemof“oilydirt,”surfactant,andwater,theinfluenceofthehydro­

Page30

Fig.8 Thesolubilizationofamodelcompoundforoilydirtwassmall inasurfactantsolutionatconcentrationsbelowtheCMC (­­­­)becauseoftheformationofaliquidcrystal.A combinationofhydrotropeandsurfactantgavean increasedsolubilization(—)causedbythehydrotrope destabilizationoftheliquidcrystal.

tropeonthestructurecouldbedirectlydeterminedusingNMR.Additionof thehydrotropemoleculeresultedinanarrowingofthedifferencebetweenthe NMRsignalsduetoadisorderingoftheliquidcrystal,asshowninFig.9[26]. Itwasassumedthatthiswastheprimaryfactorinthedestabilizationofthe liquidcrystal. Next,thediacidconformationwasdeterminedafteritwasaddedtotheoily dirtliquidcrystallinephase.Figure10showstwopossibilitiesforthe conformationofthehydrotropeintheliquidcrystal. Inoneformofthediacid(Fig.10b),bothpolargroupsarelocatedatthe interfacebetweentheamphiphilepolargroupsandthewater;theother possibilityisthatonlytheterminalcarboxylicgroupisfoundatthissite(Fig. 10a). Thetwoconformationsresultindifferentinterlayerspacing(Fig.10),anda determinationofthisdimensionwasusedtodistinguishbetweenthetwo alternatives.Low­anglex­raydiffractiongivestheinterlayerspacingdirectly fromthemaximainthediffractionpattern. Interpretationoftheresultsisstraightforward;ifadditionofthediacidtoa lamellarliquidcrystalmodeldirtsystemdidnotincreasetheinterlayerspacing, theconformationinFig.10biscorrect;ifanincreasetookplace,thenFig.10a woulddescribethestructuralorganizationofthediacidmolecule. Theinterlayerspacingwiththediacidaddedwasveryclosetothehostliquid crystal(Fig.11),andthefirstconformation(Fig.10b)isobviouslytheone encounteredintheliquidcrystal.Asacomparison,theadditionofoleicacid withonepolargrouplocatedattheinterface,gavetheexpectedincreasein interlayerspacing,asshowninFig.11.Destabilizationofthelamellarliquid

Page31

Fig.9 Additionofahydrotrope,Fig.6,toalamellarliquid crystalgaveareductionoftheorderparameterof thesurfactanthydrocarbonchain( );additionofa surfactantgavenochangeinorder( ).

Fig.10 Ahydrotrope,Fig.6,conformationwithonlyonepolargroupatthe water/amphiphileinterface(left)resultsinanenhancedinterlayerspacing d comparedwiththevalued foraconformationwithbothpolar 1

2

groupsattheinterface(right).

Page32

Fig.11 Thelow­anglex­rayvaluesforinterlayerspacinginalamellarliquidcrystal (×)wasunchangedwiththeadditionofahydrotrope( ),Fig.6.Addition ofalong­chaincompound,oleicacid,gavetheexpectedincrease( ).

crystallinephaseisnotonlyaffectedbythediacid;itappearstobeageneral propertysharedbyotherhydrotropes,suchasalkanols,short­chain quaternaryammoniumsalts,xylenesulfonates,andglycols,asshownby PearsonandSmith[8]andDarwishetal.[28]. Insomecases,theoilydirtislesspolarthanthemodelsystembyKielmanand VanSteen[26];forlesspolarfattyoilstheconceptofhydrotropicbreakdown ofaliquidcrystalisalsouseful[29]. V.Summary Thefunctionofhydrotropesinthedetergencyisdiscussedagainsttheir interactionwithlyotropicliquidcrystals.Themainactivityofthehydrotropeas apartofaliquiddetergentistoavoidgelationinbothconcentratedanddilute surfactantsystems. Thisabilityisdirectlyrelatedtoadetergent'sphaseequilibriawithhydrophobic amphiphiles.Thesephaseequilibriaillustrateandexplainthetwobasic characteristicsofhydrotropes:thatis,theirhighassociationconcentrationand theirpronouncedsolubilizingpower.

Page33

References 1.C.Neuberg,Biochem.Z.,76:107(1916). 2.C.Neuberg,J.Chem.Soc.,110(II):555(1916). 3.R.H.McKee,Ind.Eng.Chem.Ind.Ed.,38:382(1946). 4.E.C.Lumb,Trans.FaradaySoc.,47:1049(1951). 5.W.LichtandL.D.Wiener,Ind.Eng.Chem.,41:1528(1949). 6.A.S.C.Lawrence,Nature(London),183:1491(1959). 7.S.E.FribergandL.Rydhag,Tenside,7:80(1970). 8.J.T.PearsonandJ.M.Smith,J.Pharm.Pharmacol.,26:123(1974). 9.A.D.Woolfson,D.F.McCaffer,andA.P.Launchbu,Int.J.Pharm., 34:17(1986). 10.N.K.Jain,W.Patel,andL.N.Taneja,Pharmazie,43:254(1988). 11.T.Nishihata,J.H.Rytting,andT.Higuchi,J.Pharm.Sci.,70:71(1981). 12.D.W.Osborne,ColloidsSurf.,30:13(1988). 13.V.G.GaikarandM.M.Sharma,SolventExtr.IonExch.,4:839(1986). 14.A.Mahapatra,V.G.Gaikar,andM.M.Sharma,Sep.Sci.Technol., 429:23(1988). 15.G.E.StyanandA.E.Bramhall,PulpPuu.Can.,80:725(1979). 16.D.E.Bland,Res.Rev.Aust.CSIROChem.Technol.,27(1976). 17.P.J.Nelson,Appita,31:437(1978). 18.D.E.Bland,J.Skicko,andM.Menshun,Appita,31:374(1978). 19.E.L.SpringerandL.L.Zoch,Pap.6:815(1979). 20.K.Shinoda,ColloidalSurfactants,AcademicPress,NewYork,(1963), pp.9–15. 21.K.H.RaneyandC.A.Miller,J.Coll.I.Sc.,119:539(1987). 22.T.FlaimandS.E.Friberg,J.Coll.I.Sc.,97:26(1984). 23.J.M.CoxandS.E.Friberg,J.Am.OilChem.Soc.,58:743(1981). 24.B.F.Ward,Jr.,C.G.Force,A.M.Bills,andF.E.Woodward,J.Am. OilChem.Soc.,52:219(1975). 25.T.Flaim,S.E.Friberg,C.G.Force,andA.Bell,TensideDetergents, 20:177(1983). 26.H.S.KielmanandP.J.F.VanSteen,FaradayDisc.,191(1979).

24.B.F.Ward,Jr.,C.G.Force,A.M.Bills,andF.E.Woodward,J.Am. OilChem.Soc.,52:219(1975). 25.T.Flaim,S.E.Friberg,C.G.Force,andA.Bell,TensideDetergents, 20:177(1983). 26.H.S.KielmanandP.J.F.VanSteen,FaradayDisc.,191(1979). 27.S.E.Friberg,S.B.Rananavare,andD.W.Osborne,J.Coll.I.Sc., 109:487(1986). 28.I.A.Darwish,A.T.Florence,G.M.Ghaly,andA.M.Saleh,J.Pharm. Pharmacol.,40:25(1988). 29.S.E.FribergandL.Rydhag,J.Amer.OilChem.Soc.,48:113(1971).

3 PhaseEquilibria GUYBROZE AdvancedTechnologyDepartment,Colgate­PalmoliveResearchandDevelopm Milmort,Belgium I.Introduction II.WhatisaPhaseDiagram? A.Two­componentphasediagrams B.Three­componentphasediagrams C.Recordingphasediagrams III.PhaseDiagramsforIonicSurfactant­ContainingSystems A.Ionicsurfactant:water B.Ionicsurfactant,water,andorganicmaterialternarysystems C.Ionicsurfactant,water,proton­donatingmaterial,andhydrocarbon quaternarysystems IV.PhaseDiagramsforNonionicSurfactant­ContainingSystems A.Nonionicsurfactantandoil B.Nonionicsurfactantandwater C.Nonionicsurfactant,water,andoil D.Effectsofsystemparametersonphasebehavior References

I.Introduction Allliquiddetergentscontainatleastonesurfactantinthepresenceofothermateri electrolytes,oilymaterials,andotherimpurities.Unlikeacademicresearch,thefo workwithindustrial­graderawmaterials

Page36

containingsignificantamountsofmolecules,thepropertiesofwhichdifferfrom thoseofthemainproduct.Theunderstandingofhowagivenpropertyofa*give “pure”systemisaffectedby“impurities”isaccordinglyofessentialpractical importance.Understandingtheprinciplesbywhichagivenproductbehaves (asisorunderuseconditions)allowsustoreplacecounterproductivetrial­ and­errorbymoreefficientmethodswithabroaderrangeofpotential applications. II.WhatIsaPhaseDiagram? Aphasediagramisagraphicrepresentationofthephasebehaviorofasystem studied.Thesolid­liquid­vaporbehaviorofasinglecompoundasafunctionof temperatureandpressurecanberepresentedbyaphasediagram.Phase diagramsusuallyinvolvemorethanonecomponent.Theyareveryusefultools forformulation,becausetheyallowtheformulatortodefinenotonlythe acceptablecompositionofaproductbutalsotheorderofadditionofthe differentrawmaterials. A.Two­ComponentPhaseDiagrams 1.TemperatureandComposition Whetheragivenproportionoftwo(liquid)compoundswillmixisdefinedby thermodynamics.Although,inregularsystems,theentropyofmixingisalways positiveandaccordinglyfavorabletomixing,theenthalpyofmixingcanbe positiveornegativedependingontheenergyofformationoftheheterocontacts attheexpenseofthehom*ocontacts. Anexothermicmixtureusuallyleadstomixinginallproportions.Ifthemixingis endothermic,thenumberofcoexistingphasesandtheircompositiondependon temperature.Increasingtemperatureusuallyresultsinanincreaseinthemutual solubilitiesofthetwocompounds,eventuallyleadingtocompletemiscibility aboveacriticaltemperature,theupperconsolutetemperature(UCT).Note thatsomeabnormalsystemscanalsopresentalowerconsolutetemperature (LCT).BothUCTandLCTarethermodynamiccriticalpoints.Atacritical point,thecompositionsofthetwophasesinequilibriumbecomeidentical. Figure1isaschematicrepresentationofatwo­componentphasediagram characterizedbyUCT.TheleftaxiscorrespondstopureA,andtherightaxis correspondstopureB.theabscissacorrespondstodifferentA­B compositions.Itisverycommontoexpressthecompositionsinweight fractions,althoughnotcompulsory.Molefractionsorvolumefractionscanalso beused.Thecentral,shadedareacorrespondstothetwo­phasedomain.The clearzonearounditissinglephase.

Page37

Fig.1 Phasediagramoftwosubstancesthatare onlypartlymiscibleatlowtemperature andbecomefullymiscibleabovethe “upperconsulatetemperature.”

2.TieLinesandLeverRule Whenamixtureseparatesintwophases,itisimportanttoknowthe compositionsandtheamountsofthetwophasesinequilibrium.Atielinelinks thetwocompositionsinequilibrium.Thismeansthatanycompositionlocated onthesametielinewillseparateintwophases,thecompositionsofwhichare definedbythepointsofcontactofthetielinewiththephaseboundary. Therelativeamountsofthetwophasesisdeterminedaccordingtothelever rule(Figure2).Ifthecompositionsareexpressedinweightfractions,the weightfractionofphaseAisCB/ABandtheweightfractionofphaseBis AC/AB. B.Three­ComponentPhaseDiagrams Practicalsystemsinvolvemorethantwocomponents.Athree­component systemcanberepresentedinanequilateraltriangle(Figure3).Acornerofthe trianglerepresentsapurecomponent,asiderepresentsbinarymixturesofthe componentsrepresentedbytheadjacentcorners,andanypointinthetriangle representsoneandonlyonetricomponentcomposition.

Fig.2 Leverrule,allowingquantificationoftheproportionofthetwo coexistingphasesinatwo­phasedomainofaphasediagram.

Page38

Fig.3 Methodofdeterminingthecomposition ofathree­ingredientmixture.

TheweightfractionofcomponentAinthecompositionrepresentedbyPinthe triangleisgivenbytheratioofthelengthsofthesegmentsperpendiculartothe sidesPa/(P b+Pb+Pc). Similarly,theamountofBisgivenbyPb/(P a+Pb+ Pc) andtheamountofCbyPc/(P a+Pb+Pc). Ofcourse,suchaphasediagramisisothermal.Theeffectoftemperatureona three­componentphasediagramcanbevisualizedinthreedimensions,with temperatureattheelevationaxis.Thephasediagramlookslikeatriangular prism,witheveryhorizontalslicecorrespondingtoonetemperature. 1.FieldsandDensities Thereisanimportantdifferenceamongthethermodynamicfunctionsofstateas farasphaseequilibriaareconcerned.Somethermodynamicfunctionsofstate, suchastemperatureandpressure,havethesamevalueinallthephasesofa systematequilibrium.Theyareactuallytheforcesdrivingasystemtoits equilibrium.Suchfunctionsarereferredtoasfields [1]. Theotherthermodynamicfunctionsofstategenerallypresentdifferentvaluesin thedifferentphasesofasystematequilibrium.Typicalexamplesarethe volumesofthephasesandtheircomposition.Suchfunctionsaredensities. Athermodynamicexpressionoffunctionsofstatecanbeexpressedasasum offieldvariablesmultipliedbytheirconjugateddensity.Forexample, G=U+PV­TS+ ini whereUistheinternalenergy,PVistheproductofthefieldvariablepressure andthedensityvariablevolume,TSistheproductofthefieldvariable temperatureandthedensityvariableentropy;and iniistheproductofthe fieldvariablechemicalpotentialofiandthedensityvariablenumberofmoles ofi.

Page39

Thechemicalpotentialsarethefieldfunctionsconjugatedwiththe concentrations. 2.PhaseRule Foramulticomponentsystem,thephaserule[2]allowsustoknowthenumber ofindependentvariablesnecessarytodefinecompletely(fromacompositional pointofview)asystem.Thisnumberiscalledthenumberofdegreesof freedomorthevarianceofthesystem.Thevarianceƒisgivenbytherelation ƒ=C­ +2 whereCisthenumberofchemicallyindependentingredientsinthesystem, isthenumberofcoexistingphasesattheequilibrium,andthelasttermtakes careoftemperatureandpressure. Forisobarsystems,suchasallsystemsunderatmosphericpressure,thelast termshouldbe1.Similarly,isobarandisothermsystemshave0asthelast term. Adirectimplicationofthephaseruleisthatathree­componentsysteminone phaseatatmosphericpressureandat25°Chasavarianceequalto2.This meansthattwodimensionsarenecessarytodescribesuchasystem.Another implicationisthatsuchasystemcouldshowamaximumofthreecoexisting phases. Asystembasedonfivecomponentswillneed,accordingtothephaserule,a four­dimensionhyperspacetobecompletelydescribed.Torepresentsucha system,somevariablesareusuallygrouped.Theaccuracyofthe representationis,ofcourse,imperfect. Amoreaccurateprocedureistosetavariabletoaconstantvalue.Thisis impossiblewithacompositionbecauseitisadensityandisdifferentineachof thecoexistingphases.Thephaseruledeterminesthenumberofindependent variablesasystemneedstoberepresentedbutdoesnotintroduceany restrictiononthechoiceoftheindependentvariables.Itisaccordinglymuch bettertofixafieldvariabletoreduceasystemofonedimension.Insteadof usingconcentrations(densityvariables),arepresentationasafunctionofthe chemicalpotentialsiseasiertoreadandismoreaccurate.Theproblemisthat, inpractice,itisverycomplicatedtoworkatdefinedchemicalpotentials. 3.TieLinesandCriticalPoints LetusconsidertwoliquidsAandBthatarenotverysolubleineachother. AdditionofliquidCincreasesthemiscibilityofBinAandofAinB.Cbehaves likeincreasingtemperatureinthebinaryphasediagram.Themajordifferenceis thatthetielinesarenolongerparalleltothebaseline,andthecriticalendpoint isnolongeratthemaximumofthemiscibilitygap(Figure4).ThisisbecauseC doesnotpartitionevenlybetweenthetwocoexistingphases.

Page40

Fig.4 AWinsorIIternaryphasediagram.

Inthepresentcase,itgoespreferablyinB.Thecriticalendpointislocated neartheAcorner.Anisothermalcriticalendpointisusuallyreferredtoasa plaitpoint. 4.Three­PhaseDomain Insomecasesathree­phaseregioncanbeobserved(Figure5).The coexistenceofthreephasesinequilibriuminanisothermalthree­component phasediagramisazero­variantsituation.Ofcourse,aninfinityofdifferent compo­

Fig.5 AWinsorIIIternaryphasediagram.

Page41

sitionsfallinsidethethree­phasetriangle,butthecompositionsofthethree coexistingphasesdonotchangewiththeinitialcomposition.Theyare representedbythethreecornersofthethree­phasetriangle.Allthatchange aretherelativeamountsofthethreephases. C.RecordingPhaseDiagrams Therearebasicallytwomethodsofrecordingphasediagrams:thetitration techniqueandtheconstantcompositionmethod.Bothhaveadvantagesand drawbacks. 1.TitrationMethod Inthetitrationmethod,amixtureistitratedbyanother.Typically,amixtureof twooftheingredientsistitratedbythethird.Theweightoftitranttoreacha phaseboundaryiscarefullyrecordedandplottedonthephasediagram.The processisthenrepeatedtocoverthewholedomaintobeinvestigated.Sucha methodisrelativelyquickandcangiveagoodideaofthephaseboundaries. Thereareneverthelesstwomajordrawbackstothismethod. First,thismethodgivesthephasediagramatonetemperatureonly.To determinethephasediagramatanothertemperature,theprocessmustbe repeated.Thetemperaturedomainpracticallyavailablewiththetitration methodislimited,becauseeverythingmustbekeptatthesametemperature. Theseconddrawbackofthetitrationmethodisthatitisusuallyusedinanout­ of­equilibriumcondition.Insomesystems,suchasthoseinvolvinglyotropic liquidcrystals,thetimeneededtoreachequilibriumcanbeverylong;besides, metastablephasescanalsobeencountered. Aphasediagramrecordedbythetitrationmethodshouldbeusedasaguide onlyandshouldneverbeappliedtolong­termstabilityprediction. 2.ConstantCompositionMethod Intheconstantcompositionmethod,aseriesofcompositions,coveringthe compositionrangetobestudied,arepreparedintesttubes,whichareclosed. Thetesttubesareshakenthoroughlyandallowedtostandinathermostatic bath.Thetesttubescontainingturbidsolutionsareallowedtostanduntilthey separateintotwoormorecompletelyclearphases.Thenumberofclear phasescanbereportedonthephasediagram,andthephasedomainscanbe mapped. Thismethodisverylong,butitallowsonetoapproachthetrueequilibrium conditions,andthetubescanbeusedatothertemperatures.Another advantageofthismethodisthat,whenasystemgivesmorethanonephase,it ispossibletoanalyzethephasesandtoknowexactlywherethephase boundariesare,aswellastheorientationofthetielines.

Page42

III.PhaseDiagramsforIonicSurfactant­ContainingSystems A.IonicSurfactant:Water 1.KrafftPoint TheKrafftpointcanbedefinedasthetemperatureTkabovewhichthe amphiphilesolubilityinwatergreatlyincreases[3].Thereasonisthatthewater solubilityoftheamphiphile,whichincreaseswiththetemperature,reachesthe amphiphilecriticalmicelleconcentration(CMinFigure6).Whenthesolubility curveisaboveCM,thedissolvedamphiphileisformingmicellesandthe amphiphileactivityinwatersolutionnolongerincreases.Thereisaccordingly nolongeralimitationtosolubilization. TheKrafftpointisatriplepointbecauseatthistemperature,three“phases” coexist[4]:hydratedsolidamphiphile,individualamphiphilemoleculesin solution(monomers),andamphiphilemoleculesinvolvedinmicelles. Tkincreasesasthehydrophobicchainlengthincreases.TheKrafftpointsofthe sodiumsaltsoftheclassicamphiphiles(alkylsulfates,sulfonates,and benzenesulfonates)arebelowroomtemperature.TheKrafftpointisalsoa functionofthecounterion,thealkaline­earthcationsgivinghigherKrafftpoints: sodiumlaurylsulfate,Tk=9°C;Casalt,50°C;Srsalt,64°C;andBasalt,105° C. BecausetheKrafftpointimposesalimitationinformulationprocesses,the followingrulestoreduceTkcanbeofessentialinterest: ChainbranchingandpolydispersityreduceTk. ComplexationofMgandCareducesTk.

Fig.6 TheKrafftpointisthetemperature atwhichthesolubilityofthe amphiphilebecomeshigherthanits criticalmicelleconcentration.

Page43

ThepresenceofanunsaturationdecreasesTk. AveryefficientwaytoreduceTkistoincorporatetwoorthreeoxyethylene monomersbetweenthehydrophobicchainandthepolarheadgroup(alcohol ethoxysulfates). Ofcourse,ineachcase,otherpropertiesoftheamphiphile,suchasthesurface activity,canbeconsequentlybemodified. 2.PhaseDiagram Thephasediagramofsodiumdodecylsulfate/waterisrepresentativeofmany ionicsystems(Figure7)[5].Liquid(L1)istheaqueousmicellarphase;Hais thehexagonallyotropicliquidcrystal,sometimescalledthemiddlephase;and Laisthelamellarlyotopicliquidcrystal,sometimescalledtheneatphase.On thesurfactant­richside,severalhydratedsolidphasesarepresent. Asageneralrule,inany(real)phasediagram,atanypointrepresentativeofa regionandonitsboundaries,thenumberofphasesandtheirnaturearesimilar. Atielineisthelinejoiningthepointsrepresentativeoftwocoexistingphases.If thetotalcompositionofamixtureCfallsinatwo­phaseregion,itseparatesin thetwophaseslocatedatbothsidesofthetielinethatpassestheformulation point(AandB).Theweightdistributionofthetwophasesisgivenbythelever rule.

Fig.7 Typicalphasediagramofawater­anionicsurfactantsystem.

Page44

B.IonicSurfactant,WaterandOrganicMaterialTernarySystems 1.OrganicMaterial=Hydrocarbon Letusconsideranisothermofawater­ionicamphiphilebinarymixtureabove theKrafftpoint(forexample,water­sodiumoctanoate)[6].Atanamphiphile concentrationof7%(thecriticalmicellarconcentration),themicellarisotropic solutionL1appearsandlastsupto41%. Between41and46%isthemiscibilitygapbetweenL1andH1,thehexagonal phase,whichlastsupto52%.Above52%isthemiscibilitygapbetweenH1 andthehydratedcrystal. Ifanonpolarcomponent(aliphatichydrocarbonortetrachloromethane)is added,almostnothinghappens(Figure8a).Thesolubilityofdecaneineither themicellarsolutionortheliquidcrystalisverylimited.Thisistrueofany moleculeexhibitingonlydispersioncohesiveforces. 2.OrganicMaterial=PolarbutNotProton­DonatingMaterial Thesolubilityofamoleculeexhibitingdipole­dipolecohesiveforcesandlowH bondingcohesiveforces,suchasmethyloctanoate,ishigherthanthatofa hydrocarbon,butnothingspecialhappensinthecenterofthephasediagram. 3.OrganicMaterial=Proton­DonatingMaterial Ifthethirdcomponentisanon­water­solublealcohol(fivecarbonsormore), amine,carboxylicacid,oramide,thephasetopographyisprofoundly modified. ThephasediagrampresentedinFigure8b[7]showsinadditiontoL1andH1a hugelamellarphase,anarrowreversehexagonalphaseH2,and,evenmore important,a“sector­like”areaofreversemicellesL2.Thismeansthatthe solubilityinn­decanolofasodiumoctanoate­watermixturecontaining between25and62%amphiphileisbyfarmoreimportant(30–36%)thanpure water(4%)andpuresodiumoctanoate(almostnil).Thisphaseisessentialto obtainwaterinoil(w/o)microemulsions. Thesolubilityofn­decanolintheL1phaseisalsoimportant(upto12%atthe “end”oftheL1).TheL1phaseisresponsiblefortheobservationofoil­in­water (o/w)microemulsions.TheLadomain,generallylocatedinthemiddleofthe diagram,pointstowardthewatersideforacriticalsurfactant/cosurfactant ratio.(A1:2sodiumoctanoateton­decanolratioleadstoalamellarphase withaslittleas17%surfactant­cosurfactant.)Insomecases,suchasoctyl trimethylammoniumbromide­hexanol­water,thelamellarphasealreadyexists for3%hexanol+3%OTAB! Thepracticalinterestofalamellarliquidcrystalliesinitssuspendingcapability. Alyotropicliquidcrystalexhibitsaviscoelasticbehaviorthatallows

Page45

Fig.8 (a)Typicalternaryphasediagramofwater,anamphiphile (sodiumoctanoate),andahydrocarbon(octane).(b)Typical ternaryphasediagramofwater,anamphiphile (sodiumoctanoate),andacoamphiphile(decanol).This phasediagramwasestablishedbyEkwallin1975.

suspensionofsolidparticlesforaverylongtime.Thelamellarphaseis additionallycharacterizedbyanidealcriticalstraintoprovidethesuspension withgoodresistancetovibrationsandconvections,withoutimpairingits flowabilitybyaslimyaspect.

Page46

C.IonicSurfactant,Water,Proton­DonatingMaterial,and HydrocarbonQuaternarySystems Thesolubilizationofanoil,suchasdecane,inthemicellarisotropicsolutionL1 orinthereversemicellarisotropicsolutionL2canbeveryimportant.L1leads towaterinoil(w/o)microemulsionsandL2tooil­in­water(o/w) microemulsions. Notethatthe“cosurfactant”isanamphiphilewith(generally)alowermolecular weightthanthe“main”amphiphile,the“surfactant.” 1.Water­in­OilSystems AsillustratedbyFigure9,theL2phaseisabletosolubilizeaverylargeamount ofanhydrocarbon,suchasdecaneorhexadecane.Infact,acomposition containingupto75%decaneandwater/surfactant/cosurfactantproportions correspondingtotheL2phaseisstillclear,fluid,andisotropic,forms spontaneously,andisthermodynamicallystable.Thestructureofthis microemulsioncanbe(tosomeextent)regardedasadispersionoftinywater droplets(reversemicelles)inacontinuousphaseofthehydrocarbon.The surfactantandcosurfactantareatthewater/oilinterphase.Thistypeofsystem isoftenreferredtoasawater­in­oilmicroemulsion. Theterm“microemulsion”toqualifysuchsystemsisnotwellchosen:itconveys theideaofanactualemulsioncharacterizedbysubmicrometer(below0.1 m) droplets.Asiswellknown,anemulsionisnotthermodynamicallystableand cannotberepresentedbyasinglephasedomaininathermodynamicphase diagram.Ontheotherhand,theso­calledmicroemulsionsmustbeconsidered realmicellarsolutionscontainingoilinadditiontowaterandsurfactants.

Fig.9 A“water­in­oil”microemulsion.

Page47

Thesesolutions,althoughveryfarfrom“ideal”inthethermodynamicsense,are neverthelessalwaysrealinthethermodynamicsense. Anothergreatdifferencebetweenthemicroemulsionsandtheemulsionsisthat, intheverygeneralcase,amicroemulsionrequiressignificantlymoresurfactant thananemulsion. Thesewater­in­oilmicroemulsionsexhibitotherimportantcharacteristics: Thedomainofexistenceislarge.Significantcompositionalchangescanoccur withoutcrossingaphaseboundary.Suchbehaviorisparticularlyimportantfor manufacturingprocesses,becauseittoleratessome“freedom”during formulation. Theyareverystableinalargetemperaturerange,usuallyfromtheKrafftpoint uptotheboilingpoint.Moreover,thephaseboundariesarealmostinsensitive totemperature. Thephasetopographyremainsalmostunchangedevenupto75%oftheionic amphiphileisreplacedbyanonionicamphiphile. Toobtainawidewater­in­oilmicroemulsion,itisessentialtoadjustcarefully thecosurfactantstructure(usuallyitschainlength)anditsrelativeamount. Althoughtrialanderrorisstillthemostcommonlyusedmethodofobtaining microemulsions,atentativeruleistocombineaveryhydrophobiccosurfactant (n­decanol;C10OH)withaveryhydrophilicionicsurfactant(alcoholsulfates) andalesshydrophobiccosurfactant(C6OH)withalesshydrophilicionic surfactant(octyltrimetylammoniumbromide).Forveryhydrophobicionic surfactants,suchasdialkyldimethylammoniumchloride,evenawater­soluble cosurfactant,suchasbutanolorisopropanol,isadequate(thisrulederivesat leastpartiallyfromthefactthatanimportantfeatureofthecosurfactantconsists ofreadjustingthesurfactantpackingatthesolvent/oilinterface). 2.Oil­in­WaterSystems WestatedearlierthatthesolubilityofdecaneintheL1phaseisalmostnil.For awell­definedsurfactant/cosurfactantratio,hugequantitiesofdecane(orany hydrocarbon)canbesolubilizedfromtheL1.Athin,snake­likesinglephase domaindevelopstowardtheoilpole(Figure10).Thisphasecanberegarded asamphiphilemicellesswollenwithoil. Generally,theoil­in­watermicroemulsionphasesareonlymetastablesystems. Aseverymetastablesystem,o/wmicroemulsionsneedanactivationenergyto separate,andsometimesthisactivationenergyissolargethattheseparation almostneveroccurs.Suchsystemsarenotthermodynamicallystableandcould accordinglynotbeconsideredinaphasediagram.Ontheotherhand,they formspontaneouslyandarestable(becauseofthehighactivationenergyfor separation)foraverylongtime.

Page48

Fig.10 An“oil­in­water”microemulsion.

Atypicalexampleofaverystablemetastablesystemisamixtureofone volumeofoxygenwithtwovolumesofhydrogen.Themixtureisspontaneous andstableforaverylongtime,withoutbeingthermodynamicallystable.The finalthermodynamicallystablestateisobtainedbyaddingacatalyst(platinum foam)oraflametothemixture. Althoughnotthermodynamicallystable,o/wmicroemulsionsform spontaneouslyandareaccordinglyuseful(easeofmanufacture). Nonthermodynamicstabilityimpliessomeconstraints: Thepositionofao/wmicroemulsioncandependontheorderofmixingofthe rawmaterialsandontheshearimposedonthesystem. Theirdomainofexistenceisgenerallynarrow. Thesystemcanbesensitivetofreezeandthawcycles. IV.PhaseDiagramsforNonionicSurfactant­ContainingSystems Thephasetopographyofaternarysysteminvolvingwater,ahydrocarbon,and apolyethoxylatedfattyalcoholdependsonthehydrocarbonchainlength, branching,degreeofinsaturation,aromaticity,andsoon,ontheamphiphile structure(hydrophobicandhydrophilicchainlength),andalsoontemperature, whichexertsaverystronginfluenceontheconfiguration(andaccordinglyon thesolubility)ofthepolyoxyethylenesegmentsinwatersolution.Areviewhas beenpresentedbyKalhweitetal.inaseriesofpapers[8–11].

Page49

Thephasetopographyisstronglyinfluencedbythemoreelementarybehavior ofthebinaryamphiphile­oilandamphiphile­watersystems. A.NonionicSurfactantandOil Polyethyleneoxideisnotsolubleinahydrocarbon,suchashexaneordecane. Ifafattychainisattachedtoashortsegmentofpolyethyleneoxide(4–8EO units),thenonionicamphiphileobtainedexhibitsasolubilityprofileinoil dependingontemperature. Atlowtemperatures,amiscibilitygapisobtained,translatingthenonsolubility ofthepolyethyleneoxidechainintheoil.Athightemperatures,theeffectofthe energyispreponderantandtheamphiphileissolubleinallproportionsinthe oil. AspredictedbytheFlory­Hugginstheory,suchasystemshowsalower miscibilitygapcharacterizedbyanuppercriticalpoint,thetemperatureTa whichdependsonboththeoilandtheamphiphilestructure(Figure11a).The criticalcompositionisusuallynotfarfromthepureoilside. Figure11bshowsthelowermiscibilitygapbetweensomen­alkanesandC6E5 (n­hexanolethoxylatedwith5­ethyleneoxidemolecules).Theuppercritical temperatureTariseswithincreasingtheoilchainlength(itshydrophobicity). ThecriticaltemperatureTaisoftenreferredtoasthehazepointtemperature, andthemiscibilitygapbetweenoilandamphiphileplaysanessentialroleinthe ternaryphasediagram.

Fig.11 (a)Thehazepointtemperature.(b)Setofphasediagramsshowinghow thehazepointtemperatureisaffectedbythestructureoftheoil.

Page50

B.NonionicSurfactantandWater 1.CloudPoint Thephasediagramofthebinarysystemnonionicamphiphile­waterismore complicated(seeFigure12).A“classic”uppercriticalpointexists,butusually below0°C.Athighertemperatures,mostnonionicamphiphilesshowanupper miscibilitygap,whichisactuallyaclosedloopwithanupperaswellaslower criticalpoint.ThelowercriticalpointTb isoftenreferredtoasthecloudpoint temperature.Theuppercriticalpointoftenliesabovetheboilingtemperatureof themixture(at0.1MPapressure). Thepositionandtheshapeoftheloopdependonthechemicalnatureofthe amphiphile.ThecloudpointtemperatureTb playsanessentialroleinthree­ componentphasediagramtopography. Theclosedloopcanberegardedasaverticalsectionthrougha“nose”inthe concentration­temperature­pressurespace,atconstantpressure(seeFigure 13a).Whenthepressurerises,thesurfacecoveredinthetemperature­ concentrationphasebythephaseseparationloopdecreasesandvanishesata criticalpressureP*. Theshrinkingoftheloopofthesystemwater­C4E1withincreasingpressureis giveninFigure13b.ThecriticalconditionsforthelooptovanishareT*=95° C,P*=80MPa,andC*=28wt%. Toshowthemultidimensionalnatureofthesephenomena,notethatsimilar effects(shrinkingoftheloop,f.i.)canbeachievedbytheadditionof “hydrotropic”electrolytesatconstantpressureorbyincreasingthe hydrophilicityoftheamphiphile.Figure13cexhibitstheloopareasofbutanol (C4EO),ethyleneglycolbutylether(C4E1),anddiethyleneglycolbutylether (C4E2).Thelastdoesnotexhibitaloopat0.1MPa(±1atm),butthesystem behavesactuallyasifthenosewere“lurking.”Althoughnophaseseparation occursin

Fig.12 Thephasebehaviorofa water­nonionicamphiphile system.

Page51

Fig.13 (a)Theeffectofpressureonthesizeofthe“closedloop.”(b) Closedloopofthesystemwater­ethyleneglycolbutyletherat differentpressures.(c)Effectofthehydrophilicgroupofthe amphiphileontheshapeoftheclosedloop.(FromRef.[16],with permission.)

water,thelurkingnoseexertssomeinfluenceonthethree­componentphase diagram.Anotherwaytolookatthesamephenomenonistoconsiderthat,in conditionsclosetoT=90°CandC=30wt%,theC4E2­watersystemissuch thatthemixingentropyisjusthighenoughtomaintainthemoleculesinasingle phase,theenthalpictermbeingpositive(endothermic).Assoonasathird incompatibleingredient(theoilf.i.)isincorporated,theentropyisnolonger abletomaintainthemoleculesinasinglephase,andphaseseparationoccurs.

Page52 TABLE1

Amphiphile

HLB

min (wt%)

C4E1

10.3

58.9

48.7

29.0

C6E3

12.7

47.4

45.4

13.5

C8E4

12.6

29.6

39.6

6.9

C10E5

12.5

19.7

40.3

3.5

C12E6

12.4

10.6

48.0

2.2

b

(°C)

Cb (wt%)

InTable1,theHLBiscalculatedaccordingtotheempiricalequation HLB=20MH/M whereMHisthemolarmassofthehydrophilicgroupandMthetotalmolar massoftheproduct.g ministheminimumamphiphileconcentrationrequiredfor thehom*ogenizationofa1:1mixtureofwaterandn­decaneataround40°C (wt%).Tb andCb arethecoordinatesofthelowercriticalpoints(cloudpoint). AlthoughtheHLBseemstobecorrelatedwiththecloudpoint,itcannotgive anyinformationontheamphiphileefficacy(g min).EveniftheHLBremains constant,increasingboththepolarpartandthenonpolarpartofasurfactant moleculesignificantlyimprovesitsefficacy(atleastit*water­oilcompatibilizing efficacy). 2.LiquidCrystals Theclosedloopisnottheonlycharacteristicofthenonionicsurfactant­water binaryphasediagram.Liketheionicsurfactant­watermixture,thenonionic surfactants,atahigherconcentrationinwater,exhibitlyotropicmesophases. Figure14showsatypicalbinaryphasediagramexhibitingthefulllyotropic mesophasesequence: I1:cubic,isotropicphase H1:directhexagonalphase(middlephase) V1:specialcubic(viscousphase) La:lamellarphase(neatphase) Notethepresenceofthetwo­phasedomainssurroundingeachmesophase,the criticalpointontopofeach,andthezerovariantthree­phasesituation. Althoughverydifficulttodeterminewithaccuracy,themiscibilitygapsalways exist,aswellasthethree­phasesituations.Ofcourse,thecriticaltemperatures andconcentrationscorrespondingtoeachmesophasedependonthechemical natureoftheamphiphile,thepressure,andtheoptionalpresenceofan electrolyte.

criticalpointontopofeach,andthezerovariantthree­phasesituation. Althoughverydifficulttodeterminewithaccuracy,themiscibilitygapsalways exist,aswellasthethree­phasesituations.Ofcourse,thecriticaltemperatures andconcentrationscorrespondingtoeachmesophasedependonthechemical natureoftheamphiphile,thepressure,andtheoptionalpresenceofan electrolyte.

Page53

Fig.14 Binaryphasediagramofa water­ethoxylatednonionicamphiphile phasediagram,includinglyotropic liquidcrystaldomains.(FromRef. [11],withpermission.)

Figure15showssomeexamplesofnonionicamphiphile­waterbinaryphase diagrams[10,12].Asarule,amphiphileswithhydrocarbonchainlengthof8or fewercarbonatomsexhibitonlytheloop(inadomaindependingonthe ethoxylation)andnomesophase. Longerchainamphiphilesshowoneormoremesophases,onebeing preponderant.Thetypeofmainmesophase(theoneexhibitingthehighest criticaltemperature)dependsontherelativevolumesoftheEOand hydrocarbonchains.Ifthevolumesaresimilar,thelamellarphaseis preponderant.ThisisthecasewithC12E6.IfthevolumeoftheEOchainis significantlyhigherthanthevolumeofthehydrocarbonchain,thehexagonal phasewillmeltathighertemperature(C12E7);ifthevolumeoftheEOchainis muchhigherthanthevolumeofthehydrocarbonchain,thecubicphaseI1may appear. Insomecases,suchasC12E5,thelamellarphaseLa(ortheH1)interfereswith theloop(withthecloudpointcurve)andinducestheso­calledcriticalphase, L3.L3isanisotropic,oftenlactescentphase,exhibitingazero­variantthree­ phasecriticalpointatit*lowertemperatureofexistence.Thenatureofthe threephasesinpresenceatthecriticalconditionsareW(waterwithaminute amountofamphiphile),L3andLa.TheL3phaseseemstohaveabeneficial actiononcleaningperformance,maybebecauseofthepresenceofthecritical point. C.NonionicSurfactant,Water,andOil Fromthephasebehaviorofbothbinarymixtures(water­amphiphileandoil­ amphiphile),itisnowpossibletoaccount,atleastqualitatively,forthethree­ componentphasediagramasafunctionoftemperature.Thepresenceofa hazepointontheoil­amphiphilephasediagram(criticalpointa)attemperature Tashowsthatthesurfactantismorecompatiblewiththeoilathightemperature

Page54

Fig.15 Realexamplesofwater­ethoxylated nonionicamphiphilebinaryphase diagrams.(FromRef.[10],with permission.)

Page55

thanatlowtemperature.Thepresenceofacloudpointonthewater­ amphiphilephasediagram(thelowercriticalpoint )attemperatureTb shows that(atleastintheneighborhoodtemperaturedomain)theamphiphileisless compatiblewithwaterathighthanatlowtemperatures.Asaconsequence(the otherparametersbeingkeptconstant),theamphiphilebehaviordependson temperature. Atlowtemperature,thesemixturesaremorecompatiblewithwaterthanwith oil.ThephasediagramcorrespondingtothissituationisillustratedinFigure16, a1ora2.Thetielineorientationisdirectlydeducedfromthepartitioningofthe amphiphilebetweenwaterandoil:becauseunderthecurrentconditionsthe surfactantismorecompatiblewithwaterthanwithoil,themajorityofthe amphiphileisinthewaterphaseandonlyalimitedamountofamphiphileis presentintheoil.Accordingly,thetielinespointinthedirectionoftheoil corner.Diagramsa1anda2(Figure16)arereferredtoasWinsorI(WI).If thetemperatureatwhichthephasediagramisrecordedliesaboveTa(thehaze point),acriticalpointCPaispresentneartheoilcorner(althoughpure amphiphileandpureoilaremiscible,thepresenceofasmallamountofwater “recalls”thelackofcompatibilitybetweenamphiphileandoil).Ontheother hand,ifthetemperatureliesbelowTa,nocriticalpointappearsinthethree­ componentphasediagram(itseemstolieforanegativewaterconcentration). Athightemperatures,thesemixturesaremorecompatiblewithoilthanwith water.Thephasediagramcorrespondingtothissituationisc1orc2inFigure 16.Theamphiphilepartitioningnowfavorstheoil,andthetielinespointinthe directionofthewatercorner.c1andc2arereferredtoasWinsorII(WII).A criticalpointCPb isfoundifthetemperatureliesbelowthecloudpoint

Fig.16 Evolutionofwater­ethoxylatednonionicamphiphile­oilternaryphase diagramswithtemperature(risingfromatoc).

Page56

Tb butmoreoften,thecriticalpointliesoutsidetheGibbstriangle(T>Tb ). InWIandWIIrepresentations,thecriticalpointCPb orCPaiscalledaplait point.IfthetemperaturedifferencebetweenthetemperatureTatwhichthe phasediagramisrecordedandthecriticalpointofthebinarymixture.Tb orTa, increases,thedistancefromtheplaitpointtotheoil­amphiphileaxisforCPb andwater­amphiphileforCPaincreases,too.Animportantcharacteristicofa ternarysystemisthelinethatlinkstheplaitpointsasafunctionoftemperature. Theplaitpointcurveisreallythetraceofthepartitioningoftheamphiphile betweenoilandwater.Theclosertotheoilistheplaitpoint,theamphiphileis moreinthewater,andviceversa. Atlowtemperatures,theamphiphileismorecompatiblewithwaterbecause waterinteractsstronglywiththehydrophilicheadgroup.Accordingly,the hydrodynamicvolumeoftheheadgroupisgreaterthanthehydrodynamic volumeofthehydrocarbontail.Athightemperatures,headgrouphydrationis reducedandsoishydrodynamicvolume,whichbecomessmallerthanthe hydrodynamicvolumeofthehydrocarbontail.Thereisnecessarilya temperatureatwhichthehydrodynamicvolumesofthetwoantagonisticparts oftheamphiphilemoleculeareequal.Thisparticulartemperature,represented by ,isthephaseinversiontemperature(alsocalledtheHLBtemperature). Thephaseinversiontemperatureisacharacteristic(andisaccordinglya function)ofthenatureoftheoil,theamphiphile,andthebrine(ifelectrolytes arepresent).Ifthepressurecanvary(asinoilrecovery),italsochanges .It isimportanttorealizethat canbehigherthanbothCPb andCPawhenthe amphiphilesolubilityisverysmallinwaterandtotalinoil. Thetopographyofthephasediagramatthephaseinversiontemperature dependsonthemutualincompatibilitiesbetweenoil­amphiphile,water­ amphiphile,andwater­oil.Evenwithapolaroilandwatercontaininga chaotropic(hydrotropic)electrolyte,thewater­oilincompatibilityishigh enoughtoguaranteeamiscibilitygapfrom0to100°C. Withtheamphiphile,thesituationisnotassimple.Weshowedthat,at ,the amphiphileisequallycompatiblewithwaterandoil,butnoassumptionismade aboutthedegreeofcompatibility.Twolimitcasescanoccur: 1.Theamphiphileiseitherverycompatiblewithbothwaterandoilornotvery incompatible.ThephasediagramwilllooklikeFigure16b1,withaplaitpoint onlyforanequalamountofoilandwaterandwiththelinesparalleltothe water­oilside.(equalpartitioning).Thisplaitpointcorrespondstothemerger oftheCPaandCPb lines,andtheprojectionoftheplaitpointcurvesontheoil­ water­temperaturephasediagramshouldlooklikeFigure17aorb. 2.Theamphiphileisequally(andsignificantly)incompatiblewithbothwater andoil.ThephasediagramwillnowlooklikeFigure14b2.Athree­phase triangle(3PT)appears.

Page57

Fig.17 Transitionfromaninfratricriticalsituation(aandb)toasupertricritical situation(dande)throughatricriticalpoint(c).(FromRef.[11],withpermission.)

Threephasesarenowinequilibrium: 1.Awater­richphase(W) 2.Anoil­richphase(O) 3.Anamphiphile­richphase(S) Theamphiphile­richphaseisalsocalledthesurfactantphaseorthemiddle phase.Thelastterms,duetoShinoda,resultsfromthephysicalappearanceof athree­phasebody: 1.Adense,water­richphaseatthebottom 2.Alight,oil­richphaseatthetop 3.Aphasecontainingmostoftheamphiphileinthemiddle Itisworthnotingthatwithhighermolarvolumeamphiphiles,suchasC12E4,a significantamountoftheamphiphilecanbepresentintheoilphase,evenat . Here,too,theplaitpointsCPaandCPb willbeorwillnotbeinsidetheGibbs triangledependingontherelativepositionsof ,Ta,andTb . Ifthephasediagramexhibitsathree­phasetriangle,itiscalledaWinsorIII (WIII)system.Insuchasituation,theplaitpointcurvesdonotmergebut “cross”eachotherandstopattwoterminalcriticalpoints(seeFigure17dor e). Thesequenceoftheevolutionofathree­componentsystemwhentemperature hasrisencanbesummarizedasfollows.Iftheamphiphileisstrongly incompatiblewithoilandwater, WI

WIII

WII

Iftheamphiphileiscompatibleorisweaklyincompatiblewithoilandwater, WI

WII

Awaytomodifyamphiphilecompatibilitywithoilandwateristochangeits molecularweight,keepingtheproperbalancebetweenoleophobicityand hydro­

Page58

phobicity.Ahigh­molecular­weightamphiphilelikeC12E6willshowaWI­WII­ WIIsequence,althoughalow­molecular­weightamphiphilelikeC4E2willshow (withdecanolacetateastheoil)aWI­WIIsequence. Byvaryingtheamphiphile(in)compatibilitythroughitsmolecularweight,itis possibletopassfromaWI­WIItoaWI­WIII­WIIsequence.Atacertain point,asituationasillustratedinFigure15cwilloccur:theplaitpointcurves justmergecriticallyandthethree­phase­triangle(3PT)collapses.Thissituation correspondstoatricriticalpoint,anessentialconceptintheoretical thermodynamics. Whenthesystemissuchthata3PTappears(byfarthemostcommoncase), the3PTexistsfromatemperatureT1lowerthan toatemperatureTuabove .Tosomeextent,thedifferencebetweenT1andTuisameasureofhowfar thesystemisfromthetricriticalconditions.(Notethat isnotnecessarilythe averageofTuandT1.) Thethermalevolutionofatypicalsystem,withbrokencriticallines(seeFig. 18),canbesummarizedasfollows: AtT400

Page237

Fig.11 Wateruptakeasafunctionofsurfactantconcentrationusing thecollagenswellingtest.(Source:FromRef.84,reproduced bypermission.)

interfacialtensionsareusuallyanindicationofthesurfactant'seffectiveabilityto emulsifygreaseandoilysoils[18]. (b)DrainageTest.Fasterdryingandspot­freeutensilsmaybeother consumer­desiredbenefitsofLDLDs.Atestmethodtomeasurethedraining oflight­dutyliquidswasdescribedinU.S.Patent5,154,850[66].Inthistest platesareimmersedinasolutionofproductforafixednumberoftimes, removed,anddriedunderambientconditions.Thiscycleisrepeated,withthe finaldippingfollowedbyrinsing.Theplateisallowedtodryandthewater spotsarecounted.Aproductthatprovidesgooddrainageleavesfeworno spotsontheutensils. Inanotherdrainagetest[87],variousregularkitchenutensils,suchasdrinking glasses,glassdinnerplates,andceramicdinnerplates,arewashedintest compositionsundercontrolledconditions.Theutensilsarethenrinsedand placedinaracktodry.Thetimeatwhichdrainagebeginsandthepercentage areadriedbythisdrainagearerecorded. (c)RinsingTest.Althoughcopiousandlong­lastingfoamsaredesirablefor LDLDs,consumersalsowantthefoamtobeeasilyrinsedawayfromthe dishessoasnottoleaveresiduethatcouldappearasspots.Atestmethod wasdisclosedinU.S.Patent5,154,850fortheevaluationoftherinsabilityof foamgeneratedforanLDLD[66].Thisinvolvesmakingasolutionofproduct, chargingittoacontainerandstirring.Thesolutionisdischargedfrombot­

Page238

tomofthecontainer,leavingresidualfoaminthecontainer.Tapwaterisadded tothecontainerwithresidualfoamandstirredagain.Thestirringanddraining stepsarerepeateduntilnofoamremainsinthecontainer.Theproductthat needsfeweradditionsofwaterisconsideredtohavebetterrinsing characteristics. V.FormulationTechnology A.Formulation FormulatinganLDLDisbothascienceandanart.Itrequiresagoodbalance amongproductperformance,esthetics,safety,andcost.Fromtheconsumer pointofview,theimportantattributesforaliquidhanddishwashingdetergents arelistedinTable12.Consequently,liquiddishwashingdetergentsare formulatedtodeliveragainsttheseconsumer­relevantattributes. FormationofLDLDstypicallyinvolves(1)selectingappropriaterawmaterials forthedesiredperformance,(2)developingformulasandoptimizingfor performance,(3)optimizingproductesthetics,(4)testingproductsafety,(5) optimizingproductcost,and(6)agingforproductstability,and(7)validating withconsumers. Thefollowingsectionpresentsareviewonformulationagainstthese performanceattributeswiththeintentofprovidingsomeguidelines. B.GuidelinesandExamples 1.FormulatingforEffectiveCleaning ThemostimportantperformanceattributeofaLDLDiscleaning.Asdiscussed earlier,cleaningofdisheswithanLDLDreliesprimarilyontheinterfacial propertiesprovidedbythesurfactants.Varioussurfactantsexhibitdifferent interfacialpropertiesandthusvaryingabilityinremovingdifferentsoilsfrom TABLE12ImportantAttributesofaHand DishwashingLiquidDetergent

Effectivecleaning

Copiousandlong­lastingfoam

Mildnesstohands

Pleasantfragrance

Convenienttouse

Safetohumans

Safetodishesandtableware

Storagestability

Economictouse

Page239

varioussurfaces.Ingeneral,acombinationofsurfactantsisnecessaryforan LDLDtobeeffectiveagainstthewidespectrumofsoilsencounteredinthereal world. AsignificantnumberofpatentsonLDLDshavebeenissuedintheUnited States,Europe,andJapaninrecentyears.ListedinTable13arerecentU.S. patents[27,28,29,62,88–110]onLDLDformulatedforeffectivecleaning.The technologyutilizedinthesepatentsrangesfromspecialsurfactants,surfactant mixtures,salts,andmicroemulsionstotheuseofspecialadditives,suchas lemonjuiceandabrasives. 2.FormulatingforHighandLong­LastingFoam Itiswell­recognizedthatfoamisthemostimportantvisualsignalconsumers usetojudgetheperformanceofanLDLD.Thisisdespitethelackofdirect correlationbetweenthefoamingandcleaningpropertiesofanLDLD,as discussedearlier.Therefore,itiscriticallyimportantthattheformulatorscreate anLDLDwithcopiousandlong­lastingfoam. Copiousfoamusuallyrequirestheuseofhigh­foamingsurfactants,typically anionicoramphotericsurfactants[10,21,111]oramixtureofsurfactants. Long­lastingfoamoftenrequiresfoamstabilizers[22]inadditiontoaproper surfactantmixture.Table14isasummaryofrecentU.S.patents[26,72,112– 132]onLDLDsformulatingforgoodfoamingproperties.Thetechnologies involvedareeitherusingnovelsurfactantsorsurfactantblendsornovelfoam stabilizers. 3.FormulatingforMildness Forsomeconsumers,mildnesstoskinisanimportantattributeofaLDLD, especiallythosewhohavesensitiveskins. ThereareessentiallytwoapproachestoformulateanLDLDformildness:(1) usemildsurfactants,suchasnonionicsurfactants,zwitterionicsurfactants,ora combination;and(2)useadditivesthatareantiirritants,suchasmodified proteinsorpolymers.RecentU.S.patents[13,25,30,66,133–151]onLDLDs claimingamildnessbenefitaresummarizedinTable15. 4.FormulatingforDesirableEsthetics TheestheticattributesofLDLDsarejustasimportantastheirperformance. Thisincludescolor,fragrance,cloudandclearpoints,viscosity,andproduct stability.Color,fragrance,andviscosityareusuallychosenbasedonconsumer preference.Thecloudandclearpointsmustbeadequateforthetemperature towhichtheproductislikelytobeexposed. (a)CloudandClearPoints.Thecloudpointisthetemperatureatwhichthe productbeginstoturncloudyorhazyuponcooling.Theclearpointisthe temperatureatwhichthecloudyproductturnsclearagainuponwarming.In

Pa

Page24

Page2

Page

NorthAmericaandEurope,itisdesirablethatthecloudpointbebelow5°Cand theclearpointnotexceed10°C. ThecloudandclearpointsofanLDLDcanbeadjustedusinghydrotropes[6,15 suchassodiumxylenesulfonate,sodiumcumenesulfonate,alcohols,orurea.Fig 12showsthesignificanteffectofSXSontheclearpointofanLDLDformulation ishypothesizedthathydrotropesactbydestabilizingliquidcrystallinephasesthat mightformandseparatefromthebulkmixture[153]. (b)Viscosity.TheviscosityofanLDLDisveryimportantforitsconsumer acceptabilityanditsdispersibilityondilution[154].TheviscosityofanLDLDis typicallyintherangeof100–500CPS.Insomemarkets,suchasMalaysiaand HongKong,consumerslikemuchthickerproductwithviscosityintherangeof 2000–3000CPS.TheviscosityofanLDLDisastrongfunctionofitsactive ingredientlevel,theisomerdistributioninthesurfactant,therelativeamountof differentsurfactants,andthesaltlevels.Saltcanbebothaviscositybuilderanda viscosityreducer.AnexampleofasimplesystemissodiumAEOS(2.8EO)at 15%concentration.TheviscosityfirstincreaseswiththeadditionofNaClandth decreasesastheamountofNaClincreases[155].AEOSwithnarrowEO distributionthickensmuchmorethanAEOS

Pag

Page2

withaconventional,broadEOdistribution.Otherfactorsthataffectsaltthickenin arecarbonchainlegnthandcarbonchaindistribution[155]. SaltalsohasasignificanteffectontheviscosityofLAS.Dependingonthecation oftheLAS,saltintherange0–2%canhaveamodestorgreateffectonthe viscosity[154].

Page246

Fig.12 Effectofsodiumxylenesulfonateonclearpointofapremium LDLblend.(Source:FromRef.6,reproducedbypermission.)

Fattyalkanolamidesaremainlyusedasfoamstabilizers,buttheycanalsohave asignificanteffectontheviscosityofanLDLDformulation.Otherviscosity modifiersincludehydrotropes,suchasalcohol,SXS,SCS,urea,andwater­ solublepolymers. (c)PhysicalStability.Physicalstabilityisanotherimportantproductattribute thatcannotbeoverlooked.Consumersdonotwanttopurchaseaproductthat changesphysicallyovertime.Thismayincludeprecipitation,phaseseparation, ormicrobialcontamination. Agingstudiesaretypicallyconductedtoachievephysicalstabilityofproductat marketage.Variousagingconditionsarenecessarytosimulatetheconditions theproductmayencounterfromwarehousingandtransportationtostoragein storesandathome.Thisincludeselevatedtemperature,suchas50°C,andlow temperature—justabovethefreezingpoint. Theotherstandardagingstudynormallyconductedistoexposetheproductto sunlighttosimulatestorageofproductathomenearakitchenwindowfor colorandfragrancestability. Duringaging,periodicexaminationsofproductaremadetocheckforpH, color,fragrance,appearanceandcontainersforanychangesanddeviations fromroomtemperaturesamples.Anyunacceptablechangesanddeviations needtobeinvestigatedtoidentifythecauseandtodeterminecorrective measures.The

Page247

entireseriesofa*gingstudiesmustberepeatedwhencorrectionsaremadeto theformula. Tobesurethattheproductcanwithstandmicrobialcontamination,adequacy ofpreservationstudiesmustbeconducted.Iftheproductisnotabletocontrol thegrowthofmicroorganism,incorporationofasuitablepreservativeis necessary. (d)ProductSafety.Inadditiontoperformanceandesthetics,already discussed,thesafetyofthefinalproductcannotbeoverlookedinformulatinga dishwashingdetergent.Thisincludessafetytohumans,safetytosurfacesit cleans,andsafetytotheenvironment.Typically,eyeandskinirritationtestsare required.Thesafetytestingandproductlabelingrequirementsmayvaryfrom countrytocountry.Itisimportanttoensurethatallsafetytestingisconducted inaccordancewithgovernmentregulatoryrequirements. 5.OtherFormulationTechnology OtherformulationtechnologymayincludewaystoconcentrateanLDLD productandformulatingforcosteffectivenessandimprovedodorstability. Table16listsrecentU.S.patents[31,156–165]ontheseformulation technologies. VI.NewProductsandFutureTrends Liquidhanddishwashingdetergentshavegonethroughcontinuedevolutionin recentyears.Manynewproductshavebeenintroducedtothemarketplace. Therearealsosomesignificantformulationchangesasaresultoftheadvances innewtechnologiesandthechangesinconsumerhabitsandpractices. A.LineExtensions Aperenniallypopularwayofexpandingthemarketforaproductistoproduce lineextensions.Inalineextension,thesamebrandnameisappliedtoa differentformoftheproduct.Sometimesthereisanalternativephysicalform, suchasaconcentrate,powder,orliquid.Sometimesthelineextensionhasnew esthetics,suchasnewcolor,degreeoftranslucency,oropacityorfragrance. Last,theremightbeothernewfeatures,suchasincreasedmildness, antibacterialefficacy,orpresenceofaspecialingredient.Thistrendcontinued tobestrongintheearly1990sbecauseoftheexpenseinintroducinganew brandnameandthedifficultiesofattractingcustomerattentioninacrowded market[166]. IntheUnitedStatescompetitionisparticularlykeenbecauseofatrendtoslow growthintheoverallLDLDvolume.Thecookingandeatinghabitsof consumersarechangingtolowerfat,easier,simplermealsandincreaseduse ofpreparedfood,allofwhichtranslatesintolessdishliquiduse[167].Line extensionsareawayofcombatingthistrend.

Page

B.Clear,ColorlessProducts Since1990therehasbeenabroadtrendintheconsumermarkettoclear,water­ whiteproducts.Colorlessproductspresenttheconsumerwithanewesthetic experience.Colorlessdetergentconnotesmildness,purity,andsafetytothe environment.Productsasdiverseasbeeranddeodoranthavebeenformulateda clearvariants[168,169]. Aspartofthistrend,atleastthreecleardishwashingliquidshaveappearedinthe UnitedStatesandspreadtoEurope(PalmoliveSensitiveSkinfrom

Page24

ColgateandIvoryandDawnFreefromP&G).Ivorywasformerlyanopacified product.Onemethodwasdeveloped[31]toenhancethestabilityofcolorless detergentcompositions.Itinvolvestheadditionof0.05–0.5%oxygenbleach, preferablyH2O2,and0.01–2%chelatingagent,preferablycitricacid,asawayto keepthepercentagetransmittanceat97%after6monthsat140°F.Table17 showstwoLDLDcompositionsutilizingsuchtechnologyforastablecolorless LDLD.Also,therearerecentpatentsontheuseofpurerandlightercoloredraw materials[170,171]. C.IncreasedUseofNonionics Theappearanceofdishwashingliquidsusingmorenonionicsurfactantsisanother recenttrend.Smallamountsofnonionics,suchasamidesandamineoxides,have longbeenusedasfoamboosters.Asdiscussedearlier,nonionicshavenotbeen widelyusedtraditionallybecauseoftheirlowfoamingcharacteristics.Byproper formulation,itispossibletohaveasatisfactorilyfoamingdishliquidthatcontains atleast50%ethoxylatedfattyalcohol[13].Examplesofnonionicsurfactant­ basedcompositionshavingfoamingpropertiesequaltoorbetterthanthoseofa conventionalanionicsurfactant­baseddishwashingliquidarelistedinTable18. Newnonionicsarebecomingavailablethatarerelativelyhighsudsing. Alkylpolyglycosides(APGs)areaprimeexample[172].AlthoughAPGsarenot asfoamyasanionics,suchasethoxylatedalcoholsulfates,theyaremuchfoamier TABLE17ExamplesofStableColorlessLiquidDishwashingDetergentCompositions UsingH2O2

Ingredient

A(%)

B(%)

NH 4C12–13alkylEO1sulfate

15.5

28.5

NH 4C12–13alkylEO6.5sulfate

12

Tetronic704

0.1

Cocoamidopropylbetaine

0.9

C12dimethylamineoxide

5

2.6

NaCl

1

MgCl2

3.3

Ammoniumxylenesulfonate

4

3.0

Ethanol

5.5

4

Perfume

0.09

0.18

Citricacid

0.1

Disodiumdiethylenepentaacetate

0.1

H2O2

0.18

0.17

Pa TABLE18ExamplesofHigh­FoamingNonionicSurfactant­BasedLiquidDishwashing DetergentCompositions Ingredient

A(%)

B(%)

C(%

Neodol91­8

16

19

Neodol91­6

19

Ammoniumlaurylsulfate

6

6

6

Cocoamidopropylbetaine

4

4

4

LMMEA

3

5

5

Ethanol

5

5

5

SXS

7

7

7

Water,fragrance,color

Balance

thannonionics.BytheRoss­Milesfoammethod(0.1%solution,49°C,after5 minutes),aC12alcoholsulfatewouldhave18.5cmfoam,aC12alkylpolyoxyethy (6.5EO)alcoholwouldhave2.5cmfoam,andaC12APGwouldhave15cmfo [173].APGsofvaryinghydrophobesanddegreesofpolymerizationareavailabl leastthreecommercialdishwashingdetergentscontainAPGs,oneinEurope,one theUnitedStates,andoneinJapan[174,175].Inadditiontobeingrelativelyhigh foamers,APGshavesomeotherusefulproperties.Theyarecompletely biodegradable,ecologicallysafe,andmildtotheskinandofferwettingproperties similartothoseofanionicsurfactants.Boththehydrophileandhydrophobecome fromoleochemicalresources[176].Table19showsexamplesofLDLDsformul withAPGs[116]. Polyoxyalkalenesandfattyacidglucamidesarealsopartofthetrendtotheincre useofnonionicsindishliquids.Fattyacidglucamidesinteractstronglywithanioni surfactantstogivesudsboosting,interfacialtensionlowering,andirritancyreducti [177].TheglucamidesarecompletelyandrapidlybiodegradableintheStermtes Theyarehighlyremovedinactivatedsludgesewagetreatment[178].Apartialp diagramhasbeenreported.Therearetwocrystalstructuresofpolymorphs,one extendedandonebent[179].ExamplesofLDLDsformulatedwithfattyacid glucamidesarelistedinTable20[18,20]. D.EnvironmentalandRegulatoryConcerns Productswithanenvironmentalpositioningareacontinuingtrend,especiallyin Europe[180].In1992,Pril,aleadingGermanbrand,wasreformulatedtohave mildnessandenvironmentalfriendlinessplatform.Onefeatureofboth

TABLE19ExamplesofLiquidDishwashingDetergentCompositionsUsingAlkylPolygly Ingredient

A(%)

B(%)

AmmoniumC11–12alkylbenzenesulfonate

17.5

MagnesiumC11.4alkylbenzenesulfonate

6.4

AmmoniumC12–13alkylpolyoxyethylene(EO0.8)sulfate

6.1

AmmoniumC12–13alkylsulfate

15.7

SodiumC12–16 ­olefinsulfonate

10.4

Cocomonoethanolamide

5.5

C12–13alkylpolyglycoside1.7

5.0

5.9

C12alkyldihydroxyethylamineoxide

MgCl2∙6H2

5.6

Ammoniumxylenesulfonate

3.0

Ethanol

3.7

4

Water,perfume,minors

Balance

APGandfattyacidglucamidesisthatbothhydrophobicandhydrophilicendsca “naturallyderived”orfrom“renewableresources.”Neitherisanaturalproduct. areintensivelyprocessed.Thereisconsiderabledebateoverwhetheroleochemic petrochemicalsourcingisbetterfortheenvironment[181]. Governmentregulationsareacontinuingsourceofchallengetothemakersofcon detergentproducts.Forexample,inEurope,theDirectiveontheClassification, LabelingofDangerousSubstancesoftheEuropeanEconomicCommunity(EEC published[182].Sincethen,thedirectivehasbeenamendedtorequiremanufact consumerproducts TABLE20ExamplesofLiquidDishwashingDetergent CompositionsUsingMethylEsterGlucamide Surfactant

A(%)

B(%)

C12–14alkylEO8

16

AEOS

15

Amineoxide

4

Glucamide

8

10

Betaine

2

3

C9–11EO8

8

4

Mg

0.025

0.25

Glucamide

8

10

Betaine

2

3

C9–11EO8

8

4

Mg

0.025

0.25

Page252

accordingtothehazardsposedtotheconsumer(toxic,corrosive, carcinogenic,eyeorskinirritant,andsoon)andpackageandlabelthem accordingly[183,184].ThememberstatesoftheEEChadtoincorporatethe directiveintotheirlawsbyOctober1993.Themethodofclassificationis basicallyeitherdirectlytotestthefinalcompositionortoestimatethehazards byusingacalculation(calledtheconventionalmethod).Thecalculation dependsonthesumofthehazardsoftheindividualcomponentsandtheir percentageinthefinalcomposition.Theproductsmustbeclassifiedaccording totheirconcentrationwhentheyaresoldtothepublic.LDLDswith concentrationabove20%AImustbesoldinpackageswithirritantwarning labels,eventhoughthetheLDLDismildwhendilutedforuse.Labeling requirementsaffectthecompositionofdishliquidsbyacceleratingthe incorporationofmildersurfactants. E.DishLiquidswithAddedBenefits Anothertrendistheadditionofnewbenefits.Thisisinpartareflectionofthe overalltrendofmakingconsumerproductsmulti­purpose[185].Anexample istheintroductionofacombinationdishwashingliquidandantibacterialhand soapbyColgatePalmolivein1994.Abouttwo­thirdsofthepeoplewhowash theirhandsinthekitchenusedishdetergent[186],possiblybecauseitis handy.Thisproducthasthebenefitthat,inadditiontowashingdishes,when usedundiluteditkillspossiblypathogenicgermsonhands.Colgate'sproduct wasquicklyfollowedbyDialdishwashingliquid,whichalsoclaimed antibacterialhandsoapproperties.Theinterestinantibacterialpropertiesfitsa growingconcernaboutgermsonthepartofthepublic[187]. F.Concentrates Dishdetergentsindevelopedmarketshavebecomemoreconcentratedaspart ofa*generaltrendthatcanalsobeseeninlaundrydetergentsandhardsurface cleaners[188–190].Thetrendtowarddishliquidconcentratesinformerly dilutemarketsstartedinEuropein1992.InGermany(previouslya20–25% AImarket),themarketwasevolvedintoconcentratedproductswiththe introductionofUnilever'sSunlightProgress,Colgate'sUltraPlus,Henkel'sPril Supra,andP&G'sFairyUltra.Itremainstobeseenwhetherproductswith evenhigheractivelevels(40–50%)willbeacceptedbyconsumersinthe UnitedStatesandEurope. References 1.H.AndreeandB.Middelhauve,inProceedingsofthe3rdWorld ConferenceonDetergents:GlobalPerspectives(A.Cahn,ed.),AOCS Press,Illinois,1994,pp.95–98.

Page253

2.C.Kaiser,inDetergentin­Depth'80,SymposiumSeriesbytheSoapand DetergentAssociation,SanFrancisco,CA,1980,pp.30–33. 3.W.Chirash,J.Am.OilChem.Soc.58:362A(1981). 4.J.C.Drozd,ChemicalTimes&Trends7:29(1984). 5.J.C.Drozd,ChemicalTimes&Trends7:41(1984). 6.J.C.Drozd,ChemicalTimes&Trends8:49(1985). 7.K.M.Fernee,inProceedingoftheSecondWorldConferenceon Detergents(A.R.Baldwin,ed.),Amer,OilChem.Soc.,1986. 8.P.Berth,P.Jeschke,K.Schumann,andH.Verbeek,inProceedingsof theSecondWorldConferenceonDetergents(A.R.Baldwin,ed.), AmericanOilChemistsSociety,1987,pp.113–117. 9.H.HeitlandandH.Marsen,inSurfactantsinConsumerProducts: Theory,TechnologyandApplication(J.Falbe,ed.),Springer­Verlag, Heidelberg,1987,Chap.5. 10.W.M.Linfield,Ed.,inAnionicSurfactants,SurfactantScienceSeries, Vol.7,MarcelDekker,NewYork,1976. 11.J.M.QuackandM.Trautman,Ann.Chim.77:245(1987). 12.M.J.Schick(ed.),inNonionicSurfactants—PhysicalChemistry, SurfactantScienceSeries,Vol.23,MarcelDekker,NewYork,1987. 13.K.Y.Lai,U.S.Patent4,595,526toColgatePalmoliveCo.(1986). 14.C.F.PutnikandN.F.Borys,SoapCosmeticsChemicalSpecialties86 (6):34(1986). 15.B.Brancq,inProceedingsofthe3rdWorldConferenceon Detergents:GlobalPerspectives(A.Cahn,ed.),AOCSPress,Illinois, 1994,pp.147–150. 16.B.FabryandJ.E.Drach,HAPPI31(8):111(1994). 17.Y.C.FuandJ.J.Scheibel,InternationalApplicationWO92/06157to Procter&GambleCo.(1992). 18.J.A.DyetandP.R.Foley,InternationalApplicationWO92/06171to Procter&GambleCo.(1992). 19.M.Hsiang­KuenMao,InternationalApplicationWO92/06161to Procter&GambleCo.(1992). 20.R.T.Rolfes,InternationalApplicationWO92/06161toProcter& GambleCo.(1992). 21.B.R.BluesteinandC.L.Hilton(eds.),inAmphotericSurfactants, SurfactantScienceSeries,Vol.12,MarcelDekker,NewYork,1982. 22.K.Y.LaiandN.Dixit,inFoams:Theory,Measurementsand

20.R.T.Rolfes,InternationalApplicationWO92/06161toProcter& GambleCo.(1992). 21.B.R.BluesteinandC.L.Hilton(eds.),inAmphotericSurfactants, SurfactantScienceSeries,Vol.12,MarcelDekker,NewYork,1982. 22.K.Y.LaiandN.Dixit,inFoams:Theory,Measurementsand Applications(R.K.Prud'hommeandS.A.Khaned.),MarcelDekker,New York,1995,Chap.8. 23.McCutcheon'sEmulsifiersandDetergents,NorthAmericanand InternationalEditions,1994. 24.J.C.Drozd,ChemicalTimes&Trends8:50(1985). 25.R.A.Marsh,G.J.Mackic,andP.Hale,U.S.Patent4,195,077to Procter&Gamble(1980). 26.R.Billington,D.J.Edge,andP.Winterbotham,U.S.Patent4,434,089to LeverBrothersCo.(1984).

Page254

27.W.Chirash,H.E.Crosier,andC.R.Proulx,U.S.Patent4,772,425 (1988). 28.K.Schumann,O.Guirr,P.Schulz,andF.Foerg,U.S.Patent4,797,231 (1989). 29.J.T.Reilly,R.B.Hobson,andG.J.Abdey,U.S.Patent4,614,612to LeverBrothersCo.(1986). 30.K.Deguchi,K.Saito,andH.Saijo,U.S.Patent5,230,835toKaoCorp. (1993). 31.B.J.RoselleandD.T.Speckman,U.S.Patent5,244,593toProcter& GambleCo.(1993). 32.Soap,Cosmetic,ChemicalSpecialties70(10):82(1994). 33.T.Branna,HouseholdandPersonalCareProducts,31(3):86(1994). 34.Soap,Cosmetics,ChemicalSpecialties70(4):53(1994). 35.D.M.Day,J.Am.OilChem.Soc.52:461(1975). 36.B.J.Carroll,ColloidsandSurfacesA74:131(1993). 37.D.Myers,inSurfactantScienceandTechnology,VCHPublishers, NewYork,1988,p.277. 38.N.C.Power,J.Amer.OilChem.Soc.40:290(1963). 39.J.L.Lynn,Detergency,inKirk­OthmerEncyclopediaofChemical Technology(J.KroschwitzandM.Grant­Howe,eds.),4thed.,Vol.7,1994, p.1072. 40.N.K.Adam,J.Soc.DyersColour53:121(1937). 41.A.W.Adamson,inPhysicalChemistryofSurfaces,5thed.,JohnWiley andSons,NewYork,1990,pp.385,507. 42.C.A.MillerandK.H.Raney,ColloidsandSurfacesA74:169(1993). 43.A.M.Schwartz,inSurfaceandColloidScience(E.Matijevic,ed.),John WileyandSons,NewYork,1972,p.195. 44.W.G.CutlerandR.C.Davis(eds.),Detergency:TheoryandTest Methods,Vols.1and2,MarcelDekker,NewYork,1972. 45.J.L.Lynn,Detergency,inKirk­OthmerEncyclopediaofChemical Technology(J.KroschwitzandM.Grant­Howe,eds.),4thed.,Vol.7,1994, p.1096. 46.O.W.Neiditch,inDetergency:TheoryandTestMethods(W.G.Cutler andR.C.Davis,eds.),Vol.1,MarcelDekker,NewYork,1972,p.8. 47.G.Broze,inSolubilizationinSurfactantAggregates,SurfactantScience Series55:493(1995).

46.O.W.Neiditch,inDetergency:TheoryandTestMethods(W.G.Cutler andR.C.Davis,eds.),Vol.1,MarcelDekker,NewYork,1972,p.8. 47.G.Broze,inSolubilizationinSurfactantAggregates,SurfactantScience Series55:493(1995). 48.A.W.Adamson,PhysicalChemistryofSurfaces,5thed.,JohnWiley andSons,NewYork,1990,p.510. 49.C.S.Dunaway,S.D.Christian,andJ.F.Scamehorn,inSolubilizationin SurfactantAggregates(S.D.ChristianandJ.F.Scamehorn,eds.),Marcel Dekker,NewYork,1995,Chap.1. 50.J.L.Lynn,Detergency,inKirk­OthmerEncyclopediaofChemical Technology(J.KroschwitzandM.Grant­Howe,eds.),Vol.71994,p.1081 (andreferencestherein.) 51.F.SchambilandM.J.Schwuger,inSurfactantsinConsumerProducts (J.Falbe,ed.),Springer­Verlag,Heidelberg,1987,pp.133­192. 52.K.L.MathesonandT.P.Matson,J.Am.OilChem.Soc.60:1693 (1983). 53.M.F.Cox,J.Am.OilChem.Soc.,66:367(1989). 54.M.J.Rosen,inSurfactantsandInterfacialPhenomena,2nded.,Wiley Interscience,NewYork,1989,pp.135.

Page255

55.L.Cohen,R.Vergara,A.Moreno,andJ.L.Berna,J.Am.OilChem. Soc.70:723(1993). 56.M.J.Rosen,inSurfactantsandInterfacialPhenomena,2nded.,Wiley Interscience,NewYork,1989,pp.56–59. 57.EuropeanPatentApplication39110toProcter&Gamble1983. 58.M.J.Rosen,inSurfactantsandInterfacialPhenomena,2nded.,Wiley Interscience,NewYork,1989,p.372. 59.L.Cohen,R.Vergara,A.Moreno,andJ.L.Berna,J.Am.Oilchemists Soc.72(1):115(1995). 60.B.D.CondonandK.L.Matheson,J.Am.OilChemistsSoc.71(1):53 (1994). 61.G.J.JakubickiandD.Warschewski,EuropeanPatentApplication 0487169A1toColgate­PalmoliveCo.(1991). 62.F.A.Simion,D.Warscjewski,andL.A.Zyzyck,U.S.Patent4,923,635 toColgate­PalmoliveCo.(1990). 63.E.P.Duliba,C.Nguyen,G.D.Riska,G.W.Hawrylak,andF.J.Bala, InternationalApplicationWO90/02164toColgate­PalmoliveCo.(1990). 64.M.Tosaka,Y.Hayakawa,andK.Deguchi,UKPatentApplicationGB 2219594AtoKaoCorp.(1989). 65.ASTMD1173­53,Vol.15.04,AnnualBookofASTMStandards, AmericanSocietyforTestingandMaterials,Philadelphia,PA,1992. 66.K.Deguchi,K.Saito,andH.Saijo,U.S.Patent5,154,850toKaoCorp. (1992). 67.K.F.Rubin,D.VanBlarcom,andJ.A.Lopez,InternationalApplication WO93/03129toUnilever(1993). 68.C.Nguyen,G.Riska,G.Hawrylak,andF.Malihi,Characterizationof foampropertiesinlightdutyliquiddishwashingproducts,presentedatthe AOCSSymposium,May4–7,1989,Cincinnati,Ohio. 69.M.MassaroandM.E.Rerek,EuropeanPatentApplicationEP0373851 A2toUnilever(1989). 70.ASTMD4009­92,Vol.15.04,AnnualBookofASTMStandards, AmericanSocietyforTestingandMaterials,Philadelphia,PA,1992. 71.R.M.AnstettandE.J.Schuck,J.Am.OilChem.Soc.43:576(1966). 72.A.R.Naik,U.S.Patent4,528,128toLeverBrothersCo.(1985). 73.A.M.Patel,C.R.Robbins,N.S.Dixit,andR.E.Babecki,European PatentApplication0410567A2toColgatePalmoliveCo.(1990). 74.P.FroschandA.Kligman,J.Am.Acad.Dermatol.1:35(1979).

72.A.R.Naik,U.S.Patent4,528,128toLeverBrothersCo.(1985). 73.A.M.Patel,C.R.Robbins,N.S.Dixit,andR.E.Babecki,European PatentApplication0410567A2toColgatePalmoliveCo.(1990). 74.P.FroschandA.Kligman,J.Am.Acad.Dermatol.1:35(1979). 75.J.K.SmidandH.C.Meljer,EuropeanPatentApplication0215504A1 toStamicarbonB.V.(1986). 76.R.S.BergerandJ.P.Bowman,J.Tox.CutaneousOccular1:109 (1982). 77.G.Imokawa,K.Sumura,andM.Katsumi,J.Am.OilChemSoc.52:484 (1975). 78.C.Prottey,D.Oliver,andA.C.Coxon,Int.J.Costmet.Sci.6:263 (1984). 79.A.R.NaikandA.C.Coxon,EuropeanPatentApplication0232153A2 toUnileverNV(1987). 80.H.Tanaka,Y.Horiuchi,andK.Konishi,Anal.Biochem66:489(1975). 81.T.Kanekiyo,N.Tanaka,andS.Sano,EuropeanPatentApplication 0356784A2toMitsubishiPetrochemicalCo.(1989).

Page256

82.K.Miyazawa,M.Ogawa,andT,Mitsui,Int.J.Cosmet.Sci.6:33 (1984). 83.E.Gotte,Chem.Phys.SurfaceActiveSubst.Proc.Int.Congr.4:83 (1964). 84.J.C.Blake­Haskins,D.Scala,andL.D.Rhein,J.Soc.Cosmet.Chem. 37:199(1986). 85.G.J.Putterman,N.F.Wolejsza,M.A.Wolfram,andK.Laden,J.Soc. Cosmet.Chem.28:521(1977). 86.A.S.AnavkarandC.V.Natraj,J.Am.OilChem.Soc.66:1386(1989). 87.M.P.Aronson,E.A.Larrauri,andZ.J.Hussain,EuropeanPatent Application0013585toUnileverLimited(1980). 88.K.Ofosu­Asante,U.S.Patent5,378,409toProcter&GambleCo. (1995) 89.T.A.CripeandK.Ofosu­Asante,U.S.Patent5,376,310toProcter& GambleCo.(1994). 90.E.H.Brumbaugh,U.S.Patent5,298,195toAmwayCorp.(1994). 91.K.Ofosu­Asante,U.S.Patent5,269,974toProcter&GambleCo. (1994). 92.R.M.WiseandT.A.Cripe,U.S.Patent5,230,823toProcter&Gamble Co.(1993). 93.M.A.RahmanandS.R.Wu,U.S.Patent5,236,612toLeverBrothers Co.(1993). 94.E.J.PancheriandM.H.K.Mao,U.S.Patent5,167,872toProter& GambleCo.(1992). 95.M.Tosaka,Y.Fujii,N.Morii,andK.Deguchi,U.S.Patent5,096,621to KaoCorp.(1992). 96.R.J.Corring,V.Lamberti,andM.P.Aronson,U.S.Patent4,992,212to LeverBrothersCo.(1991). 97.E.J.Pancheri,Y.S.Oh,andR.M.Wise,U.S.Patent4,904,359to Procter&GambleCo.(1990). 98.P.Durbut,A.Mehreteab,M.Mondin,andG.Broze,U.S.Patent 4,919,839toColgate­PalmoliveCo.(1990). 99.C.D.Roth,K.B.Moser,G.M.Howell,andA.D.Urfer,U.S.Patent 4,834,903toHenkelCorp.(1989). 100.K.D.Wisotzki,O.Guirr,P.Jeschke,K.Schumann,K.H.Schmid,and M.Biermann,U.S.Patent4,839,098toHenkelCorp.(1989). 101.S.Choi,U.S.Patent4,853,147toColgate­PalmoliveCo.(1989).

99.C.D.Roth,K.B.Moser,G.M.Howell,andA.D.Urfer,U.S.Patent 4,834,903toHenkelCorp.(1989). 100.K.D.Wisotzki,O.Guirr,P.Jeschke,K.Schumann,K.H.Schmid,and M.Biermann,U.S.Patent4,839,098toHenkelCorp.(1989). 101.S.Choi,U.S.Patent4,853,147toColgate­PalmoliveCo.(1989). 102.M.Biermann,O.Guirr,P.Sandkuehler,K.H.Schmid,K.Schumann,E. Sung,andK.D.Wisotzki,U.S.Patent4,732,704toHenkelCorp.(1988). 103.E.J.PancheriandM.H.K.Mao,U.S.Patent4,772,423toProcter& GambleCo.(1988). 104.L.W.Bernardino,E.W.Kuhl,M.H.Mao,andE.J.Pancheri,U.S. Patent4,681,704toProcter&GambleCo.(1987). 105.J.B.Welch,U.S.Patent4,492,646toProcter&GambleCo.(1985). 106.R.C.PierceandF.J.Bala,U.S.Patent4,430,237toColgate­Palmolive Co.(1984). 107.M.P.Aronson,E.A.Larrauri,andZ.J.Hussain,U.S.Patent4,368,146 toLeverBrothersCo.(1983). 108.E.J.Pancheri,U.S.Patent4,316,824toProcter&GambleCo.(1982).

Page257

109.T.P.O'BrienandL.Benjamin,U.S.Patent4,268,406toProcter& GambleCo.(1981). 110.J.A.Hellyer,D.S.Lambert,andR.Mermeistein,U.S.Patent 4,133,779toProcter&GambleCo.(1979). 111.M.Rosen,SurfactantandInterfacialPhenomena,2nded.,John WileyandSons,NewYork,1989,Chap.7. 112.M.A.RahmanandS.R.Wu,U.S.Patent5,352,387toLeverBrothers Co.(1994). 113.D.S.Conner,J.J.Scheibel,Y.C.Fu,B.P.Murch,R.A.Watson,and K.L.McKillop,U.S.Patent5,338,491toProcter&GambleCo.(1994). 114.K.Y.Lai,U.S.Patent4,877,546toColgate­PalmoliveCo.(1989). 115.A.R.NaikandF.M.Orlandini,U.S.Patent4,732,707toLever BrothersCo.(1988). 116.R.A.Llenado,U.S.Patent4,663,069toProcter&GambleCo.(1987). 117.D.J.Edge,A.R.Naik,andM.Scott,U.S.Patent4,680,143toLever BrothersCo.(1987). 118.M.G.J.Macduff,A.R.Naik,andM.Scott,U.S.Patent4,596,672to LeverBrothersCo.(1986). 119.R.A.Llenado,U.S.Patent4,599,188toProcter&GambleCo.(1986). 120.R.J.EdwardsandP.D.Hardman,U.S.Patent4,576,744toLever BrothersCo.(1986). 121.D.J.Edge,A.R.Naik,andM.Scott,U.S.Patent4,537,709toLever BrothersCo.(1985). 122.Y.DamangeonandA.Jacques,U.S.Patent4,556,509toColgate­ PalmoliveCo.(1985). 123.T.E.CookandR.A.Llenado,U.S.Patent4,536,318toProcter& GambleCo.(1985). 124.J.,D.Hampson,R.Billington,andI.R.Cox,U.S.Patent4,434,087to LeverBrothersCo.(1984). 125.J.D.HampsonandR.Billington,U.S.Patent4,434,090toLever BrothersCo.(1984). 126.I.R.CoxandK.Jones,U.S.Patent4,434,091toLeverBrothersCo. (1984). 127.K.Y.Lai,R.C.Pierce,J.Dupre,andH.S.Killam,U.S.Patent 4,454,060toColgate­PalmoliveCo.(1984). 128.J.Gerritsen,R.E.Atkinson,A.F.Martin,andM.R.Atkins,U.S.Patent 4,435,317toProcter&GambleCo.(1984).

(1984). 127.K.Y.Lai,R.C.Pierce,J.Dupre,andH.S.Killam,U.S.Patent 4,454,060toColgate­PalmoliveCo.(1984). 128.J.Gerritsen,R.E.Atkinson,A.F.Martin,andM.R.Atkins,U.S.Patent 4,435,317toProcter&GambleCo.(1984). 129.N.Ootani,T.Ishii,andH.Ikeda,U.S.Patent4,486,338toKaoCorp. (1984). 130.I.R.Schmolka,U.S.Patent4,490,279toBASFWyandotteCorp. (1984). 131.K.Tsujii,N.Saito,andM.Kawai,U.S.Patent4,277,378toKaoSoap Co.(1981). 132.B.RossallandJ.D.Hampson,U.S.Patent4,235,752toLeverBrothers Co.(1980). 133.S.T.Repinec,G.S.Gomes,andR.Erilli,U.S.Patent5,385,696to Colgate­PalmoliveCo.(1995).

Page258

134.S.T.Repinec,G.S.Gomes,andR.Erilli,U.S.Patent5,387,375to Colgate­PalmoliveCo.(1995). 135.A.R.Naik,U.S.Patent5,387,373toUnileverPatentHolding(1995). 136.S.T.Repinec,G.S.Gomes,andR.Erilli,U.S.Patent5,284,603to Colgate­PalmoliveCo.(1994). 137.J.Palicka,U.S.Patent5,340,502toBerolNovelAB(1994). 138.R.D.Farris,W.A.Cassidy,J.R.Schwartz,andN.K.Hutchinson, U.S.Patent5,084,212toProcter&GambleCo.(1992). 139.J.R.WittpennandR.L.Giovanoni,U.S.Patent5,139,705(1992). 140.W.C.AllisonandL.J.Nehmsmann,U.S.Patent5,075,042toPPG Industries,Inc.(1991). 141.K.Deguchi,K.Saito,H.Saijo,andM.Tosaka,U.S.Patent5,025,069 toKaoCorp.(1991). 142.K.Deguchi,K.Saito,andH.Saijo,U.S.Patent5,073,293toKao Corp.(1991). 143.D.L.BissettandH.K.Mao,U.S.Patent4,555,360Procter&Gamble Co.(1985). 144.S.C.Klisch,K.Y.Lai,andC.R.Robbins,U.S.Patent4,554,098to ColgatePalmoliveCo.(1985). 145.N.Fujisawa,K.Ooshima,J.Iijima,andK.Degucki,U.S.Patent 4,526,710toKaoCorp.(1985). 146.K.A.JonesandH.S.Walker,U.S.Patent4,371,461toProcter& GambleCo.(1983). 147.R.R.EganandP.L.Cotrell,U.S.Patent4,256,611toSherexChemical Co.(1981). 148.R.R.EganandP.L.Cotrell,U.S.Patent4,247,425toSherexChemical Co.(1981). 149.N.Miyajima,N.Johna,N.Mizushima,andK.Ohbu,U.S.Patent 4,287,102toLionFat&OilCo.(1981). 150.N.Miyajima,N.Johna,N.Mizushima,andK.Ohbu,U.S.Patent 4,259,216toLionFat&OilCo.(1981). 151.K.Ohbu,N.Johna,andI.Kashiwa,U.S.Patent4,235,759toLionFat &OilCo.(1980). 152.T.P.MatsonandM.Berretz,SoapCosmet.ChemSpec.55(12):41. (1979). 153.S.E.FribergandC.Brancewitz,inLiquidDetergents,Surfactant ScienceSeries,Vol.2(K.Y.Lai,ed.),MarcelDekker,NewYork,1996.

&OilCo.(1980). 152.T.P.MatsonandM.Berretz,SoapCosmet.ChemSpec.55(12):41. (1979). 153.S.E.FribergandC.Brancewitz,inLiquidDetergents,Surfactant ScienceSeries,Vol.2(K.Y.Lai,ed.),MarcelDekker,NewYork,1996. 154.J.C.DrozdandW.Gorman,J.Am.OilChem.Soc.65:398(1988). 155.D.L.Smith,J.Am.OilChem.Soc.68:629(1991). 156.T.Crutcher,J.W.Perine,J.D.Sauer,K.R.Smith,andJ.E.Borland, U.S.Patent5,167,873toProcter&GambleCo.(1992). 157.F.J.LengandC.A.Leng,U.S.Patent4,880,569toLeverBrothers Co.(1989). 158.K.Koch,I.Wegener,andB.Glesen,U.S.Patent4,772,426toHenkel Corp.(1988). 159.E.T.Messenger,D.E.Mather,andB.M.Phillips,U.S.Patent 4,753,754toAlbright&WilsonLimited(1988). 160.F.J.Leng,J.Lucassen,D.A.Reed,P.J.Sams,andP.Winterbotham, U.S.Patent4,784,800toLeversBrothersCo.(1988).

Page259

161.R.J.Edwards,P.D.Hardman,M.Scott,C.J.Walsh,andP. Winterbotham,U.S.Patent4,734,221toLeversBrothersCo.(1988). 162.R.Erilli,U.S.Patent4,671,895toColgatePalmoliveCo.(1987). 163.C.Lamb,J.R.Lawson,andC.Pearson,U.S.Patent4,671,894to Procter&GambleCo.(1987). 164.D.E.Mather,E.T.Messenger,andB.M.Phillips,U.S.Patent 4,440,665toAlbright&Wilson,Limited(1984). 165.P.L.DawsonandE.Willis,U.S.Patent4,235,758toLeverBrothers Co.(1980). 166.Householdproducts:Playingthenamegame,Soap,Cosmetics,Chemical Specialties71(2):44(1995). 167.A.E.Sloan,FoodTechnology88–100(1994). 168.S.Wloszcazyna,USAToday(US)Feb.24,1993,p.1. 169.NewYorkTimes(NationalEdition),June6,1993,p.F11. 170.GermanPatentDE4200850toHenkelCorp. 171.GermanPatentDE4203001toHenkelCorp. 172.B.Fabry,M.Philipp,andJ.E.Drach,HAPPI,31(8):111(1994). 173.P.A.Siracusa,HAPPI29(4):101(1992). 174.G.R.Whalley,HAPPI29(8):76(1992). 175.G.R.Whalley,HAPPI31(6):122(1994). 176.D.Balzer,TensideSurfDet.28:419(1991). 177.B.Murch,Am.OilChem.Soc,SpringMeeting,Anaheim,CA(1993). 178.E.Weeg­Aerssens,E.MatthijsandM.Stalmans,Am.OilChem.Soc. SpringMeeting,Anaheim,CA(1993). 179.Y.C.Fu.Am.OilChemistsSoc.SpringMeeting,Anaheim,CA(1993). 180.G.R.Whalley,HAPPI31(6):121(1994). 181.G.R.Whalley,HAPPI29(8):75(1992). 182.CommissionDirective(67/548/EEC),Classification,Packagingand LabelingofDangerousSubstancesOJ(L257). 183.CommissionDirective(88/379/EEC),Classification,Packagingand LabelingofDangerousSubstancesOJ(L187)July16,1987. 184.CommissionDirective(92/32/EEC)AmendingDirective67/548/EEC. 185.T.Branna,HAPPI30(6):27(1993).

183.CommissionDirective(88/379/EEC),Classification,Packagingand LabelingofDangerousSubstancesOJ(L187)July16,1987. 184.CommissionDirective(92/32/EEC)AmendingDirective67/548/EEC. 185.T.Branna,HAPPI30(6):27(1993). 186.T.Branna,HAPPI31(11):71(1994). 187.T.Branna,HAPPI31(4):54(1993). 188.J.N.Chavez,HAPPI32(1):74(1995). 189.A.Teng,HAPPI31(6):45(1994). 190.R.F.Lake,SCCS70(4):53(1994).

8 Heavy­DutyLiquidDetergents AMITSACHDEVandSANTHANKRISHNAN ResearchandDevelopment,GlobalTechnology,Colgate­PalmoliveCompany,P NewJersey I.Introduction II.PhysicalCharacteristicsofHDLDs A.Structuredliquids B.Unstructuredliquids C.Nonaqueousliquids III.ComponentsofHeavy­DutyLiquidDetergentsandTheirProperties A.Surfactants B.Builders C.Enzymes D.Bleaches E.Opticalbrighteners F.Detergentpolymers G.Miscellaneousingredients IV.ProductEvaluationMethods A.Physicalproperties B.HDLDdetergencyevaluation V.FutureTrends Appendix References

Page262

I.Introduction Heavy­dutyliquiddetergents(HDLDs)wereintroducedintothelaundry marketmuchlaterthanpowderdetergents.Thefirstcommercialheavyduty liquiddetergentappearedintheUnitedStatesin1956.Liquiddetergentswere introducedintheFarEast/PacificcountriesandEuropeonlyinthe1970sand 1980s,respectively(Fig.1). Heavy­dutyliquidshaveseveraladvantagesoverpowderdetergents.The liquiddetergentsreadilyandcompletelydissolveinwater,especiallycoolor coldwater.Theycanbeeasilydispensedfromthebottleorrefillpackagewith relativelylessmessinessthanpowderdetergents,andtheydonottendtocake

FIG.1 CommercialNorthAmerican(above)andEuropeanandAsian/Pacific HDLDs.

Page263

instorageaspowdersoftendowhenexposedtomoisture.Furthermore,liquid detergentslendthemselvestopretreatmentatfullstrengthdirectlyonstainsand thusprovideaconvenientwaytoremovetoughstains. Atypicalheavy­dutyliquiddetergentconsistsofallorsomeofthefollowing components:surfactants,builders,opticalbrighteners,enzymes,polymers,and fragrance.Inaddition,itmaycontainotherspecialingredientsdesignedfor specificfunctions. Bothanionicandnonionicsurfactantsareusedintheformulationofliquid detergents.Surfactantsareprimarilyresponsibleforwettingthesurfacesof fabricsaswellasthesoil,helpingtoliftthestainsoffthefabricsurfaceandto stabilizedirtparticulatesoremulsifygreasedroplets[1–4].Themainanionic surfactantsaresodiumalkylbenzenesulfonate,alkylsulfate,andalkyl ethoxylatedsulfate.Nonionicsurfactantsusedareprimarilyethoxylatedfatty alcohols.OthersurfactantsarealsousedinHDLDsandarediscussedina subsequentsection. Buildersareformulatedintodetergentsmainlytosequesterthehardnessofthe wateraswellastodispersethedirtandsoilparticulatesinthewashwater. Commonbuildersusedaresodiumandpotassiumpolyphosphates,silicates, carbonates,aluminosilicates,andcitrates[5]. Opticalbrightenersarecolorlessdyesthatabsorbultravioletradiationandemit bluishlight,makingfabricslookwhiterandbrighter.Mostdetergentscontain brightenersintheircomposition,theircontentadjustedmoreorlesstoreflect regionalconsumerpreferencesandmarketingclaims. TheenzymesinHDLDsusuallyconsistofaproteaseandanamylase.In addition,thedetergentmayalsocontainlipaseandcellulaseenzymes.The functionoftheproteaseistodigestproteinstainssuchasbloodand proteinaceousfoodstains,whiletheamylaseactsonstarchystains.Lipase attacksfattychainsingreasystainsandisgoodatcleaningcertainoilysoils. Cellulaseisanenzymethatactsoncellulaseandisbeingusedindetergentsfor removingprillsincottonfabrics,therebyrestoringreflectanceofthefabric surfaceandmakingcolorslookbrighter[6]. Liquidlaundrydetergentsmaybeclassifiedintotwomaintypes:unstructured liquidsandstructuredliquids.Unstructuredliquiddetergentstypicallyare isotropic,havealargeandcontinuouswaterphase,andarethemost widespreadtypeofliquiddetergentsintheU.S.market.Structuredliquid detergentsarethoseconsistingofmultilamellarsurfactantdropletssuspendedin acontinuouswaterphase.Thesestructuredliquidsarecapableofsuspending insolubleparticlessuchasbuilders(phosphates,zeolites).Theseliquidsarein useinEuropeandinAsianandPacificcountries.Afurthertypeofliquidisone wherethecontinuousphaseisnonaqueous.Onlyonecommercialexampleof thistypeofliquiddetergentisknown.

Page264

Thesectionsthatfollowdescribethephysicalcharacteristicsofheavy­duty liquids,followedbydetaileddescriptionsoftypicalformulationcomponentsof liquiddetergentsandtheirfunctions.Abriefsectiononevaluation methodologiesfollows.Finally,emergingtrendsintheformulationand detergencyofheavy­dutyliquidsarediscussed.Acomprehensivetabulationof thepatentsrelevanttoHDLDsisgivenintheAppendixattheendofthis chapter. II.PhysicalCharacteristicsofHDLDs Thephysicalformandappearanceoflaundryliquidscanvarygreatlyamong variousregionsoftheworld.Thesedifferencesintypesofliquiddetergents fromregiontoregionislargelydictatedbythelaundryhabitsandpersonal choicesoftheconsumersinthatparticularmarket.HDLDscanbebroadly classifiedintotwomaintypes:structuredandunstructuredliquids.Athirdtype, nonaqueousliquids,havebeenactivelystudiedandarealsodiscussedinthis chapter. Structuredliquidsareopaqueandusuallythickandareformedwhensurfactant moleculesarrangethemselvesasliquidcrystals[7–9].Thisformofliquid detergentislargelymarketedinEuropeandtheAsian/Pacificregions. Unstructuredliquids,ontheotherhand,areusuallythin,clear,ortranslucent andareformedwhenallingredientsaresolubilizedinanaqueousmedium. Figure2givesexamplesofunstructuredandstructuredHDLDs.Nonaqueous liquids,inwhichthecontinuousmediumconsistsofanorganicsolvent,canbe eitherstructuredorunstructured. A.StructuredLiquids 1.Introduction Thegeneraltendencyofliquidscontaininghighlevelsofanionicsurfactantsand electrolyticbuildersistostructurethemselveswiththeformationofliquid crystallinesurfactantphases[7–12].Thistrendcanbeacceleratedwiththeuse oflongerorbranchedchainalkylgroupsandbyusingahigherelectrolytelevel [13].Theresultingliquidisopaque,extremelythick,unpourable,and frequentlyphysicallyunstable.Itmayalsosubsequentlyseparateintotwoor morelayersorphases:athick,opaquesurfactant­richphasecontainingthe flocculatedliquidcrystalsandathin,clearelectrolyte­richphase.The challenge,therefore,indevelopingsuchaliquidistonotonlytopreventphase separationoftheproductbutalsotoreducetheviscositytoapourablelevel.A pourableleveldepends,ofcourse,onthepreferences,requirements,and convenienceoftheconsumer.Viscositiesofcommerciallyavailablestructured liquidsvaryfrom500to9000cps.

Page265

FIG.2 Examplesofanunstructured(left)andastructured(right) HDLD.

2.LamellarStructures Theliquidcrystallinephaseinastructuredliquidisfrequentlyintheformof sphericallamellarbilayersordroplets[14–18].Theinternalstructureofthese dropletsisintheformofconcentricalternatinglayersofsurfactantandwater. Thisconfigurationisoftencomparedtothestructureofanonion,whichhasa similarconcentricshell­likestructure(Fig.3).Ithasbeendeterminedthatthe physicalstabilityofthesetypesofliquidsisachievedonlywhenthevolume fractionofthebilayerstructuresishighenoughtobespace­filling.This correspondstoavolumefractionofapproximately0.6[7,8,19].An excessivelyhighvalueofthisvolumefraction,however,willleadto flocculation,highviscosity,andanunstableproduct.Astabledispersionofthe lamellardropletsmakesitpossibletosuspendsolidsandundissolvedparticles betweenthelamellaeandinthecontinuouselectrolytephase.Thiscapability allowstheuseofrelativelyhighbuilder/electrolytelevels.Manypatentshave beenissuedforstructuredliquidsthathavethecapabilityofsuspending undissolvedsolids.Thesuspendedsolidsincludebleaches[20,21],builders suchaszeolites[22],andsofteners[23,24]. Thereareanumberoffactorsthatdeterminewhetherornotalamellardroplet canform.Asageneralrulethesebilayerstructureswilldevelopifthesurfactant headgroupissmallerthantwicethetranscross­sectionalareaofthealkyl chainsofthesurfactants[8,13].Thisratiooftheareasofthealkylchainand thesurfactantheadgroupisreferredtoasthepackingfactorofthesurfactant system.Amongtheelementsthatcanacceleratetheformationofthesestruc­

Page266

FIG.3 Schematicdiagramsofanonflocculatedlamellardispersion,alamellar droplet,andtheinternalstructureofalamellardroplet.(Reproducedwith permissionfromRef.10.)

turesistheuseoflongerchainalkylchains,branchedalkylgroups,dualalkyl groups,andhigherlevelsofelectrolytes.Conversely,byusingshort,straight­ chainalkylgroups,lowerelectrolytelevels,orhydrotropes,theonsetofthe liquidcrystallinephasecanbedelayed. Alamellardropletisheldtogetherbyanintricatebalanceofvariousinterand intradropletforces[10,11].Anyalterationorimbalanceintheseforcescan haveadirectimpactonthestabilityofthestructuredliquid.Electrostatic repulsionbetweenthechargedheadgroupsoftheanionicsurfactantsis compensatedbyattractivevanderWaalsforcesbetweenthehydrophobic alkylchainsoftheanionicandnonionicsurfactants.Inaddition,therearealso osmoticandstericforcesbetweenthehydratedheadgroupsofthenonionic surfactants.Theseparticularinteractionscanbeeitherattractiveorrepulsive dependingonthe“quality”ofthesolvent[8].Theresultantforcehasadirect influenceonthesizeofthewaterlayers,thesizeofthedroplet,andeventually thestabilityoftheliquid. 3.StabilityofStructuredLiquids Thebalanceofattractiveforcesbetweenthesurfactantlayersandthe compressive/repulsiveforcesduetostericand/orosmoticinteractionsmakes highlyconcentratedformulationspossible.Butasingle­phasestructuredliquid, byits

Page267

verynature,isneverinastateofcompleteequilibrium.However,forpractical purposesastablestructuredliquidisachievedwhentheinter­andintralamellar forcesaremanipulatedinsuchawaythatphaseseparationisminimizedor avoided.Dependingontheextentofconcentrationoftheingredients,various methodscanbeemployedtostabilizethesestructuredliquids(Fig.4). Themostbasicmeansofachievingstabilizationandviscosityreductionisby theadditionofelectrolytes.Theadditionofcationsintheformofelectrolytes suchassodiumcitratehastheeffectofscreeningoutsomeoftherepulsive forcesbetweenthenegativelychargedanionicheadgroups.Also,the electrolytesinthecontinuouslayerprovideanelementofstabilitybygivingit ionicstrength.Thisscreeningoutprocessreducesthesizeoftheintralamellar waterlayerandconsequentlythesizeoftheentiredroplet.Thisreductionof thelamellarsizefreesupsomeextravolumeinthecontinuousphaseand thereforeprovidesanadditionalelementofstability.Increasingtheamountsof citrateworksonlyuptoacertainpointbeyondwhichthereisagreateramount ofundissolvedsaltthatwillbehavetobesuspendedbetweenthelamellar dropletsandcanleadtoexcessivethickening.Anotherconsequenceofadding large

FIG.4 Schematicdiagramsdepictingthestabilityof(a)unstableand(b)stable structuredHDLDs.

Page268

amountsofelectrolyteisthefurthererosionoftheintralamellarwaterlayer. Thiswaterlayerhastobemaintainedatalevelthatissufficienttohydratethe headgroupsofthenonionicsurfactants.Salting­outelectrolytes[25],ofwhich sodiumcitrateisanexample,alsohydrateandthereforecompetewiththe nonionicsandotheringredientsforthewater.Excessiveshrinkageofthewater layercanthereforeresultinproductinstability. (a)FreePolymers.Theadditionofelectrolytesassistsinloweringviscosities andinstabilizingthestructuredliquidonlyuptoacertaindegree[26–28]. Polyethyleneglycolandpolyacrylatesareexamplesoffreepolymers.These polymersarenonstructuring,andconsequentlytheydonothavethecapability ofadsorbingontothelamellardispersions.Insteadtheyfunctionbymeansof osmoticcompression,whichresultsinshrinkageofthelamellardroplet.The consequenceofthisreductioninthevolumeoftheindividualdropletsisa highervoidfractionintheliquid.Thispolymercanthereforebeusedonlyupto thepointatwhichtheoptimumvoidfractionisachieved.Furtherincreasesin thefreepolymeroftenleadtodepletionflocculation,whichisalso accompaniedbylargeincreasesinviscosityaswellasphaseseparation. Concentratingthestructuredliquidbymerelyformingthinnerlamellarlayers andincreasingthevolumefractionofthelamellaecanhaveimplicationsforthe rheologyandpourabilityoftheproduct.Thebestpourabilitycharacteristicsare obtainedwhenthevolumefractionofthelamellarphaseisaslowaspossible andthelamellaearerelativelylarge.Acompromisebetweenthesetwo pathwaysorstrategieshastobeachievedinordertoformulateastable, concentratedliquidwithacceptablerheologicaltraits.Thistaskbecomes increasinglydifficultatevenhigherconcentrations.Withonlyalimitedvoid fractionavailable,thelamellardroplets,eventhoughtheyarereducedinsize, beginflocculating. (b)DeflocculatingPolymers.Freepolymersareeffectiveinreducingthesize ofthelamellardispersionandtherebyimpartingstability.However,atever increasingconcentrationsofsurfactantsandbuilders,simplyreducingthe intralamellarwaterlayerisnotsufficienttopreventflocculation.Theproblem wassuccessfullyaddressedbyresearchersatUnilever,whowereableto preventflocculationbyalteringtheinterlamellarforces[13,19,29–31].This wasachievedbymeansofadeflocculatingpolymerthatcouldbeconsidered tobebifunctional.Thesepolymersconsistedofahydrophilicbackbone attachedtoahydrophobicsidechain.Thehydrophiliccomponentis fundamentallylikeafreepolymerorcopolymerinbothstructureandfunction. Thehydrophobesidechainistypicallyalongalkylchain.Figure5showsa schematicofanexampleofaUnileverdeflocculatingpolymer—anacrylate­ laurylmethacrylatecopolymer.Theuniqueaspectofthispolymerisitsability tonotonlyutilizeitshydrophiliccomponenttoinduceosmoticcompression withinthelamellarbilayers

Page269

FIG.5 AnexampleofaUnileverdeflocculatingpolymer. (ReproducedwithpermissionfromRef.13.)

butalsotoemployitshydrophobicsidechaintoadsorbontothesurfactant layers.Thishydrophobicityalsopermitsthedeflocculatingpolymertoattach itselftotheoutersurfaceofthelamellardropletandconsequentlybeableto influencetheinterlamellarinteractions.Thistraitpreventsoratleastlessensthe likelihoodofflocculationoccurring. Thestabilityofthesestructuredliquids,therefore,isobtainedwhenthelamellae arenotonlysmaller,butalsowellseparated(Fig.4).Thisresultsinnotonlya single­phase,stableliquidbutalsoaproductwithgoodflowability characteristics.Table1showsthelistofingredientstypicallyfoundina structuredHDLD. B.UnstructuredLiquids 1.Introduction HeavydutyliquidsonthecurrentU.S.marketarepredominantlyinthethin, clear,andunstructuredform.Allmanufacturersmarketlaundryliquidsthatare

TABLE1ExampleofStructuredHDLDFormation Ingredient

Function

Sodiumlinearalkylbenzenesulfonate

Anionicsurfactant

Sodiumalkylethersulfate

Anionicsurfactant

Alcoholethoxylate

Nonionicsurfactant

Sodiumcarbonate

Builder

Zeolite

Builder

Sodiumperborate

Bleach

Polymer

Stabilizer

Protease

Enzyme

Fluorescentwhiteningagent

Brightener

Boricacid

Enzymestabilizer

Preservative

Fragrance

Colorant

unstructured,thin,andclear.Besidestheobviousdifferencesinthephysicalappe propertiesbetweenthestructuredandunstructuredliquids,thereareotherdissim theformulationoftheseliquidsthatcanhaveadirectimpactonthecleaningperfo theproduct.Unstructuredliquidsarecommonlyformulatedwithhigheramounts surfactantsinconjunctionwithlowerbuilderlevels(seeTable2).Thisisincontra structuredliquids,whichneedmorebuildersandelectrolytestosustainthestruct TABLE2ExampleofUnstructuredHDLDFormulation Ingredient

Function

Sodiumlinearalkylbenzenesulfonate

Anionicsurfactant

Sodiumalkylethersulfate

Anionicsurfactant

Alcoholethoxylate

Nonionicsurfactant

Sodiumcitrate

Builder

Monoethanolamine

Buffer

Soap

Defoamer

Protease

Enzyme

Fluorescentwhiteningagent

Brightener

Boricacid

Enzymestabilizer

Ethanol

Solvent

Sodiumxylenesulfonate

Hydrotrope

Preservative

Page271

phase.Thephysicalappearanceandstabilityofstructuredliquidsarevery dependentonsurfactantratios,whereastheclear,unstructuredliquidsallowfar greaterflexibilityinchoosingsurfactantratiosaslongasasinglephaseis maintained.Themainadvantageinstructuredliquidsistheirabilitytosuspend undissolvedandinsolublesolids.Theunstructured,clearliquids,ontheother hand,bytheirverynaturedonotpermittheuseofinsolublematerials.This resultsintheuseofonlysolublebuilders,andatrelativelylowlevels,and precludestheuseofotherusefulbuilderingredientssuchaszeolites. Itcannotbesaidthatoneformofliquidhasad*stinctadvantageovertheother. Theformulationandmarketingofeitherformmaybedependentonsuch factorsasefficacytargets,consumerpreferencesandhabits,choiceand availabilityofrawmaterials,andcostconsiderations. 2.StabilityofUnstructuredLiquids Unlikestructuredliquids,unstructured,thin,clearliquidscanbedeveloped onlyiftheonsetoftheformationofliquidcrystalsisdelayedorbrokenup.This canbeaccomplishedbytwodifferentmethods:(1)byaddinghydrotropesand solventsthatcandisruptorpreventanyliquidcrystalformationandalsoaidin solubilizingtheothercomponentsintheformulationor(2)byincreasingthe watersolubilityoftheindividualcomponents.Morethanlikelyacombination ofthetwotechniquesisusedtodevelopastableliquid.Therespectivecostsof theseapproachesultimatelydeterminestheiruseinthefinalformulation.Some ofthemethodsusedtoformulatestable,single­phase,thin,clear,unstructured liquidsaresummarizedbelow. Compoundssuchassodiumxylenesulfonate(SXS),propyleneglycol,and ethanolareusefulindisruptingandpreventingtheformationoflamellar structuresthatcanopacifyandthickentheliquid.SXSisespeciallyusefulin solubilizingLAS.Propyleneglycolandethanolhavetheadditionalbenefitof contributingtoenzymestability.Themaindrawbackofusingthesecompounds isthattheydonotcontributetothedetergencyperformanceoftheproduct. Theirprincipalfunctionistoaidinachievingthethin,clearappearanceby solubilizingvariousingredientsandpreventingprecipitationandphase separation. Itispossibletoformconcentratedliquiddetergentsthatdonotrequire additionalingredientstoassistinthemaintenanceofaclearappearance.Thisis usuallyaccomplishedbyminimizingtheuseofLASandelectrolytesand maximizingtheuseofnonionics. Theuseofingredientswithincreasedwatersolubilityisprobablythemost effectivetoolforproducingasingle­phasethin,clearliquid.Potassiumsalts generallytendtobemoresolublethantheirsodiumcationcounterparts.In theseformulations,ahigherlevelofpotassiumcitratethansodiumcitratecan besuccessfullyincorporated.Detergencyperformanceisnotaffectedby replacingtheNa+cationwithK+.

Page272

Citratecompoundsaresalting­outelectrolytes—theymaytieupwater moleculesintheliquidandasaresulthelpforcetheformationofliquidcrystals orlamellarstructures.Itissometimespossibletoreversethistrendbyadding salting­inelectrolytes,compoundswithhighlyotropicnumbers(>9.5)thatcan raisethecloudpointoftheliquidformulation[25].Thispermitsincreased concentrationwithouttheonsetofstructuring. Ethanolaminessuchasmonoethanolamine(MEA)andtriethanolamine(TEA) canalsobeinvaluableinenhancingthesolubilityoftheingredients.These compoundsarebifunctionalinthattheyhavecharacteristicscommontoboth alcoholsandamines.Asaresult,saltsofMEAandTEAaremoresolublethan thosepreparedwithNa+.NeutralizingsulfonicacidwithMEAisavery effectivewayoffreeingupadditionalwatertoallowforfurtherconcentration. Inaddition,anyfreealkanolaminethatisnottiedupasasaltbehaveslikean alcoholandcanaidinsolubilizingotheringredients.Thesecompoundsalso providedetergencybenefitsbybufferingthewashwater. C.NonaqueousLiquids Nonaqueousliquidsmaybeclassifiedasstructuredorunstructureddepending onthelevelofsurfactantsandothercomponentsintheirformulation[32]. Thesedetergentshaveseveraladvantagesoveraqueousformulations. Nonaqueousdetergentscancontainalltheprimaryformulationcomponents, includingthosethatarenotcompatiblewithoraredifficultinaqueoussystems. Theliquidmatrixisanonionicsurfactantoramixtureofnonionicsurfactants andapolarsolventsuchasglycolether[33–36].Builderssuchasphosphates, citrates,orsilicatescanbeincorporated,althoughzeolitescontainingabout 20%waterarenotgenerallyrecommended[37].Phosphate­freeformulations havealsobeenreported[38].Bleaches,suchastetraacetylethylenediamine (TAED)activatedsodiumperboratemonohydrate,canbeincludedinthese formulations.Sincetheseformulationsdonotcontainwater,enzymesmaybe addedwithminimalneedforstabilizers.Softeningingredientscanalsobe included[39,40].Furthermore,excellentflexibilityintheconcentrationofthe detergentcanbeattainedbecauseonlytheactivecleaningingredientscanbe includedintheformulation.Thedensityofthefinishedproductcanbeashigh as1.35g/mLforstructuredliquids,requiringlowdosagesforequivalent cleaning.However,thetwomajorchallengesfacingthistechnologyare physicalstabilityoftheproductanddispensabilityandsolubilizationinthe washingmachine. III.ComponentsofHeavy­DutyLiquidDetergentsandTheir Properties Heavy­dutylaundryliquidformulationsvaryenormouslydependinguponthe washinghabitsandpracticesoftheconsumersinagivengeographicregion.

Page273

Thedegreeofcomplexitycanrangefromformulationsthatcontainminimal amountsofcleaningingredientstohighlysophisticatedcompositionsconsisting ofsuperiorsurfactants,enzymes,builders,andpolymers.Thissection describestheingredientsfoundintypicalHDLDformulations. A.Surfactants SurfactantsarethemajorcleaningcomponentsofHDLDformulations throughouttheworld.Unlikepowderdetergents,physicalandphasestability considerationsgreatlylimittheuseofothercleaningingredients,chiefly builders.Surfactantscontributetothestainremovalprocessbyincreasingthe wettingabilityofthefabricsurfaceandstainsandbyassistinginthedispersion andsuspensionoftheremovedsoils. AnHDLDformulatorhasavastarrayofsurfactantsfromwhichtochoose [41].Acomprehensivelistinganddescriptionofthesesurfactantsarebeyond thescopeofthisarticle.Thechoiceandlevelsofsurfactantsusedin commercialHDLDproductsdependnotonlyontheirperformanceand physicalstabilitycharacteristicsbutalsoontheircosteffectiveness. Thissectionbrieflydescribestheanionicandnonionicsurfactantscommonly usedincommercialHDLDformulations.Cationicsurfactants,thoughalsoused onalargescale,aremostlyusedinfabricsoftenerproducts.Linear alkylbenzenesulfonates(LAS),alcoholethoxylates,andalkylethersulfactes arethreeofthemostwidelyusedtypesofsurfactantsinliquidlaundry detergents[42].Recently,variousexternalconsiderations,suchas environmentalpressures,havepromptedmanufacturerstochangetheir surfactantsmixtoincludenewernaturaltypesofsurfactants[43–45]. 1.LinearAlkylbenzeneSulfonate(LAS) Theexcellentcost­performancerelationshipoflinearalkylbenzenesulfonates (LAS)makesthemthedominantsurfactantsusedinlaundrydetergents[46]. RecenttrendsinEuropeandNorthAmericaindicateagradualreductionin theiruseinHDLDs.Nevertheless,theiruseinlaundryliquidsgloballyisstill substantial,especiallyinthedevelopingregionsoftheworld. DeAlmeidaetal.[47]andMatheson[48]provideacomprehensive examinationoftheprocessing,production,anduseoflinearalkylbenzeneinthe detergentindustry.Linearalkylbenzenesulfonatesareanionicsurfactantsand arepreparedbysulfonatingthealkylbenzenealkylateandsubsequently neutralizingitwithcausticsodaoranyothersuitablebase.Thealkylategroup istypicallyalinearcarbonchainoflengthrangingfromC10toC15,withaphenyl groupattachedtooneofthesecondarycarbonsonthealkylchain(Fig.6). Thealkylateportionofthemoleculeishydrophobic,whereasthesulfonate groupprovidesthewatersolubilityandthehydrophilicity.Mostcommercial alkylatesaremixturesofvariousphenylisomersandcarbonchainhom*ologs [49].The

Page274

FIG.6 StructuresoftypicalHDLDsurfactants.

positionofthephenylgroupdependsonthemanufacturingmethod.Systems usingAlCl3orHFcatalystsarethemostcommon.Table3listsatypical isomericandhom*ologdistributioninlinearalkylbenzeneproducedusingthe HFprocess. Thelengthofthecarbonchainandtheisomericdistributionstronglyinfluence theformulatabilityandperformanceofthesurfactant.Ithasbeendetermined thatthesurfaceactivityofthissurfactantincreaseswithlongercarbonchain lengths[50].Alongeralkylchainincreasesthehydrophobicityofthemolecule, lowersitsCMC,andgenerallyprovidesbettersoilremovalcharac­

TABLE3hom*ologandIsomericDistributionofLinearAlkylbenzenePreparedUsingthe Percent

Compound

C10

C11

C12

C13

5­Phenyldecane

29.8

0.06

C10–13ØC11.5

4­Phenyldecane

26.6

0.05

3­Phenyldecane

22.7

0.09

2­Phenyldecane

20.1

0.2

6­/5­Phenylundecane

0.4

43.1

4­Phenylundecane

0.2

21.4

3­Phenylundecane

0.2

17.6

2­Phenylundecane

0.1

14.9

6­Phenyldodecane

0.6

22.2

0.07

5­Phenyldodecane

0.6

28.0

0.06

4­Phenyldodecane

0.9

15.5

0.1

3­Phenyldodecane

0.3

12.9

0.2

2­Phenyldodecane

0.1

12.0

0.5

6­/7­Phenyltridecane

0.06

33.2

5­Phenyltridecane

0.05

22.2

4­Phenyltridecane

0.02

15.3

3­Phenyltridecane

13.3

2­Phenyltridecane

9.4

2­Phenylisomer

20.2

15.2

12.0

9.9

Source:Ref.4.

14.8

2­Phenyltridecane

9.4

2­Phenylisomer

20.2

15.2

12.0

9.9

14.8

Source:Ref.4.

teristics[51–54].LASofferssuperiorandverycosteffectivedetergencyperfor especiallyonparticulatesoils.However,duetoitshighsensitivitytowaterhardn bestutilizedonlywithanaccompanyingbuilder[55].Figure7showstheincrease tohardnessionsforLASwithlongercarbonchainlengths.Withouttheassistanc builders,thesoilremovalefficacyofLASdropsrapidlywithincreasingwaterhar [4,56](Fig.8). TheamountandtypeofLASinHDLDsdependlargelyonthephysicalformoft liquid—unstructuredorstructured.Inunstructuredliquids,solubilityconsideration theuseofshortercarbonchainlengths( C11).Thechoiceofcationscanalsoen solubility.PotassiumandaminecationssuchasMEAandTEAcanbeusedinste sodiumionstoimprovestability[57].Anincreaseintheproportionofthe2­phen theLAScanalsoincreasesolubility[58]andsometimesimprovethehardnesstol thesurfactant[59].Instructuredliquids,ontheotherhand,alongeralkylchainc desirablefortheformationofsurfactantlamellae.Thechoiceof

Page276

FIG.7 Ca2+­LASprecipitationboundarydiagrams.(Reproducedwith permissionfromRef.55.)

FIG.8 SoilremovaldataforLASasafunctionofwaterhardness. Resultsareshownforsurfactantwithbuilder(STPP)and electrolyte.(ReproducedwithpermissionfromRef.4.)

Page277

thecounterioncanalsoaffectstabilitybecauseionssuchasNa+andK+have differentelectrolyticstrengths,whichcanalsoimpactphasestability. AdisadvantageofusingLASinHDLDsistheirdetrimentaleffectonenzymes. Withtheincreasinguseofenzymesitbecomesnecessarytodevoteasizable portionoftheformulationspaceandcosttoenzymestabilization.Alternative approachesusingsurfactantsmorecompatiblewithenzymescanbeemployed. 2.AlcoholEthoxylates Figure6showsthegeneralstructureofanonionicalcoholethoxylate surfactant.Itshydrophobicgroupislinearwiththecarbonchainlengthranging typicallyfromC10toC15.Thehydrophilicethoxylategroupcanvaryinsize fromanaverageof5to7molofethyleneoxide[60–62].Alcoholethoxylates aremarketedcommerciallyunderthetradenamesNeodol(ShellChemical Co.),Genapol(HoechstAG),Tergitol(UnionCarbideCo.),andAlfonic (VistaChemicalCo.).Thefeedstocksforthealcoholcanbederivedfrom naturalcoconutoilsourcesaswellasfrompetroleumfeedstocks.These surfactantsaresoldina100%concentrationandaretypicallyinliquidform. AlcoholethoxylateusageinHDLDsdependsonthetypeorthephysicalform oftheliquiddetergent.Itshighaqueoussolubilitymakesitausefulingredientin unstructuredliquids.Thissolubilitycanbefurtherenhancedbyincreasingthe degreeofethoxylationanddecreasingthecarbonchainlength.However,these modificationscansometimeshavenegativeramificationsforcleaning performance.Thechoiceofcarbonchainlengthandthedegreeofethoxylation dependonthephysicalstabilityandcleaningrequirementsofindividual formulations.Structuredliquids,ontheotherhand,cantolerateonlyalimited amountofthenonionicalcoholethoxylatesurfactant,asthestabilityofthese liquidsisdependentontheoptimumdistributionofthesizeandpacking configurationoflamellardroplets.Excessiveuseofnonionicsurfactantscan disturbthissomewhatdelicateequilibriumandcausephaseseparationofthe HDLD. Nonionicsurfactantslikealcoholethoxylatesdemonstratesuperiortoleranceto hardwaterions.ThischaracteristicisespeciallyusefulinunstructuredHDLD formulationsbecausesolubilityconstraintslimittheamountofbuilderthatcan beincorporated.Theyalsoprovideexcellentcleaningbenefitsandare commonlyusedinconjunctionwithLASinHDLDformulations[54,63]. StudieshaveshownthatinLAS­containingproducts,alcoholethoxylatescan lowerthecriticalmicelleconcentration(Fig.9)aswellasprovide improvementsinthedetergency[63].Superiorcleaningisobserved,especially onoilysoilssuchassebumonpolyesterfabrics[64].Thepresenceofalcohol ethoxylatesinanLAS­containingformulationwasfoundtoimprove detergency,especiallyathigher

Page278

FIG.9 Criticalmicelleconcentration(CMC)asafunctionof nonionicsurfactantcontentinaLAS/NIsolution. (ReproducedwithpermissionfromRef.63.)

hardnesslevels(Fig.10).Improvementshavealsobeendetectedwhennarrow EOrangesurfactants(Fig.11)areused[65]. Thisinsensitivitytocalciumionsalsoprovidesaveryimportantbenefitinthe stabilizationofenzymes(seeSec.III.C).Ithasbeenshownthatthese surfactantsarenotasdetrimentaltothepreservationofenzymesinHDLDsas NaLAS.Withincreasingrelianceontheuseofenzymesinthelaundrycleaning process,nonionicsurfactantslikealcoholethoxylatesplayanimportantrolein enhancingenzymestability. 3.AlkylEtherSulfates(AEOS) Alkylethersulfatesarealsoanionicsurfactantsthataremanufacturedby sulfatingalcoholethoxylatesurfactants[66].Figure6showsthestructureofthe molecule,whichconsistsofthealcoholethoxylateconnectedtoasulfate group.TheEOgroupstypicallyrangeinsizefrom1to3moles. Thesesurfactantsprovidenumerousbenefitsthatmakethemanattractive optiontoHDLDformulators.Theyarecommonlyusedinbothstructuredand unstructuredliquids.Theirhighwatersolubilitymakesitpossibletouseawide rangeoflevelsinunstructuredliquids.Theycanalsobesuccessfully incorporatedinstructuredliquids. UnlikeNaLAS,alcoholethersulfatesaremoretoleranttohardnessionsand asaresultdonotrequireanaccompanyinghighlevelofbuilderinthe formulation.Figure12showstherelativeinsensitivityofalkylethersulfatesto hardnessions.TheadditionofsmallamountsofNaAEOStoLASwasfound toimproveinterfacialproperties.Theyaremorefriendlytoenzymes,whichcan alsoreducethecostofenzymestabilizersintheformulation.Theyarealso mildertotheskinandasaresultareusedinhanddishwashingformulations. The

Page279

FIG.10 Detergencyperformanceat100°FofLASandLAS/AEblends. Formulationalsocontained25%STPP,10%silicate,and35% sodiumsulfate.(ReproducedwithpermissionfromRef.63.)

superiordetergencyperformanceofthissurfactantisdemonstratedbyits superiorefficacyinmoststaincategories. 4.AlkylSulfates Alkylsulfatesareanionicsurfactants(Fig.6)thatareusedprimarilyinEurope asasubstituteforLAS[43].Environmentalconsiderationshaveprompted manufacturerstousesurfactantsofthistype,whichcanbederivedfrom oleochemicalsources.ThecarbonchainlengthcanrangefromC10toC18. TallowalcoholsulfateisacommonformusedinHDLDs.Itprovidesexcellent detergencyandgoodfoamingandsolubilitycharacteristics.

Page280

FIG.11 Typicalethoxylateadductdistributioninnarrow­range andbroad­rangeC alcoholsurfactantswithsimilar 12–14

cloudpoints.(ReproducedwithpermissionfromRef.62.)

FIG.12 Datashowingthehardnesstoleranceofalkylether sulfatesurfactants.(ReproducedwithpermissionfromRef.4.)

Page281

5.PolyhydroxyFattyAcidAmides(Glucamides) Polyhydroxyfattyacidamides(Fig.6)arecurrentlyusedinlightdutyand heavydutylaundryliquids.Recentadvancesinthetechnologyforthe manufactureofthesesurfactantshasmadetheiruseeconomicallyfeasible[67– 69].Theuseofnaturalorrenewablerawmaterialsimprovestheir biodegradationcharacteristics.Severalpatentshavebeenfiledfordetergent formulationscontainingglucamidesthatclaimsuperiorityincleaningefficacyfor oily/greasyandenzyme­sensitivestains[70–73].Synergieswithotheranionic andnonionicsurfactantshavebeenreported[72,73].Theirimprovedskin mildnessqualitiescanbeusefulinlight­dutyliquidapplications[74].Enzyme stabilizationcharacteristicsinglucamideformulationsarealsoenhancedrelative toLAS­containingHDLDs. 6.MethylEsterSulfonates Methylestersulfonatesareanionicsurfactants(Fig.6)thatarealsoderived fromoleochemicalsourcesandhavegoodbiodegradabilitycharacteristics. Theyarecurrentlyusedinonlyalimitednumberofmarkets,primarilyinJapan [44].Theirgoodhardnesstolerancecharacteristics(Fig.13)andtheirabilityto alsofunctionasahydrotropemakesthesesurfactantsagoodcandidatefor liquiddetergents[74].Theyhavealsobeenfoundtobegoodco­surfactants forLAS­containingformulations.Theycanonlybeusedinproductswithlow alkalinityduetothelikelihoodofhydrolyticcleavageoftheesterlinkageunder highpHconditions. 7.OtherSurfactants Onceusedasamajorsurfactantindetergentformulations,soapisnowused onlyasaminoringredientinHDLDs.Itsfunctionisprimarilytoprovidefoam

FIG.13 Detergencyasafunctionofwaterhardnessin methylestersulfonate/LASformulations. Conditions:25°C,surfactant270ppm,Na2CO3 135ppm,silicate135ppm.(Reproducedwith permissionfromRef.44.)

Page282

controlinthewashingmachine.Europeanliquidformulationscontainhigher soaplevelsthantheircounterpartsinNorthAmericabecauseofincreased foamingtendenciesinEuropeanmachines.Soapalsoaidsinthecleaning process.However,itcanleavebehindanencrustationofsoapscumonfabric surfaces.Avarietyofothersurfactantsarealsoused,primarilyforspecialty applications[76].Theyincludeamineoxides,amphoterics,andbetaines. B.Builders Theprimaryfunctionofbuildersinthedetergencyprocessistotieupthe hardnessionsCa2+andMg2+.Theyalsoprovideothervaluablebenefits includingmaintainingthealkalinityofthewashsolutionandfunctioningas antiredepositionandsoil­dispersingagentsand,insomecases,ascorrosion inhibitors[77–81]. Thelevelofbuildersusedinliquidformulationsdependslargelyonthreemain criteria:(1)theaqueoussolubilityofthebuilder,(2)thephysicalformofthe liquid,and(3)thecosteffectivenessoftheingredient.Duetoinherentsolubility constraintsinformulatingstableliquiddetergents,theusagelevelofbuildersin HDLDsissignificantlylowerthaningranulateddetergents.Thisisespecially trueinthecaseofunstructuredliquids,wherethesolubilitylimitationsofthe builderlargelydictateitslevelintheformulation.Instructuredliquids,however, acertainamountofelectrolyticbuilderisnecessarytoinducestructuring,which allowstheincorporationofsignificantlyhigheramountsofbuilder.Insoluble builderscanalsobeaddedbysuspendingthemintheliquid.Builderingredients suchaszeolites,phosphates,silicates,orcarbonatescanaccountfor20%or moreofthetotalformulation. 1.Mechanisms Buildercompoundsdecreasetheconcentrationofthewashwaterhardnessby formingeithersolubleorinsolublecomplexeswiththecalciumandmagnesium ions.Themechanismsbywhichtheseingredientsfunctioncanbebroadly groupedintothreeclasses:(1)sequestration,(2)precipitation,and(3)ion exchange.Allthreemethodshavetheultimateeffectofloweringthe concentrationofhardnessionsthatcouldinterferewiththecleaningprocessby renderingthesurfactantslesseffective. Insequestration(chelation),thehardnessionsCa2+andMg2+areboundtothe builderintheformofsolublecomplexes.Phosphates,citrates,andNTAare examplesofthisclassofbuildercompound.Table4liststhecalcium­binding capacitiesofvariousbuilders.Otherstronglychelatingcompoundsexist, phosphonatesandEDTAforexample,buttheyaregenerallynotextensively usedinHDLDs.Themostefficientbuilderissodiumtripolyphosphate. Unfortunately,tripolyphosphatehasbeenidentifiedasapossiblecauseof eutrophi­

TABLE4SequestrationCapacityofSelectedBuilders

Structure

Ch Sodiumdiphosphate

Sodiumtriphosphate

1­Hydroxyethane­1,1­dip

Aminotrismethyleneph

Nitrilotriaceticacid

TABLE4Continued

Structure

Chemicalname N­(2­Hydroxyethyl)im

Ethylenediaminetetra

1,2,3,4­Cyclopentane

(tablecontinuedonnextpage)

(tablecontinuedfrompreviouspage)

Structure

Chemicalname Citricacid

O­Carboxymethyltartr

Carboxymethyloxysuc

Source:Ref.82.

Page286

cationoflakesandrivers.Itisseverelycontrolledandevenbannedinseveral countries.Asaresult,mostcountriesinNorthAmericaandEuropehave convertedtononphosphateformulations.Otherregionsarealsogradually imposingrestrictionsontheuseofphosphates. Carbonatesareexamplesofbuildersthatprecipitateoutthecalciumionsinthe formofcalciumcarbonate.Precipitationbuilders,however,canleavebehind insolubledepositsontheclothesandwashingmachineparts.Aluminosilicates suchaszeolitesareion­exchangecompounds:theyremovecalciumand magnesiumionsandexchangethemwithsodiumions. Mostbuildersalsocontributesignificantlytodetergencybyprovidingalkalinity tothewashwater.AhighpH(>8)solutionaidsintheremovalofoilysoilssuch assebumstainsbysaponifyingthem.Insolublefattyacidsfoundinoilysoilsare convertedtosolublesoapinthepresenceofalkalinity. 2.BuilderClasses (a)Inorganic.Inregionswherephosphoruscompoundsarestillpermittedin detergentproducts,polyphosphatessuchastripolyphosphatesand pyrophosphatesareunsurpassedintheircosteffectivenessandcleaningability. Theseingredientsarenotonlyverygoodchelatingagentsbutalsoprovidea soil­suspendingbenefit.Stains,onceremovedfromthefabric,canbe suspendedinthewashwaterbyelectrostaticrepulsion,therebypreventingsoils fromredepositingontotheclothes.Toacertainextentphosphatesalsobuffer thewashwater.Thesolubilityoftripolyphosphatescanbeenhancedbyusing thepotassiumsalt.Thiswouldbethemoreappropriateforunstructured liquids.Instructuredliquids,thesodiumsaltcanbeincorporatedatmuch higherlevels. Carbonatecompoundsofferaneconomicalmeansofreducingthecalcium contentandalsoraisingthealkalinityofthewashwater.Theylowerthe concentrationofthecalciumbyprecipitatingitintheformofcalcium carbonate.Thiscouldleadtofabricdamageintheformofencrustation,which becomesespeciallyapparentafterrepeatedwashingcycles.Fortunately,thisis notamajorprobleminunstructuredHDLDs,becausetheamountofcarbonate usedintheformulationislimitedbysolubilityrestrictions.Compoundssuchas sesquicarbonatesandbicarbonatesthatarelesslikelytoleadtotheformation ofcalciumcarbonateprecipitateshavebettersolubilitycharacteristicsandcan beusedtoagreaterextentinunstructuredliquids.Ontheotherhand, structuredliquidsofferthepotentialofincorporatingmuchhigheramountsof thesecompounds.Carbonatesarealsogoodwashwaterbuffersandcan providethealkalinityneededforimprovedefficacy. Anotherclassofingredientsthatareeffectiveatprovidingalkalinityarethe sodiumsilicates[83].Althoughtheycanalsobegoodsequestrantsandare usedassuchinpowderformulations,theyprovidethisbenefitonlyathigher con­

Page287

centrations.Onceagain,thesolubilityrestrictionspreventtheincorporationof anysubstantialamountsinunstructuredliquids.Atthelowlevelsatwhichthey canbeused,theyarevaluableasalkalinebuffers.Theuseofsodiumsilicatesin HDLDsislimitedtotheliquidsilicates,whichhaveSiO2/Na2Oratiosfrom3.2 to1.8. Aluminosilicates[Mz(zAlO2:y SiO2)]areanothertypeofbuilders,ofwhich zeoliteAisacommonexample[84].ZeoliteAisasodiumaluminosilicatewith anAl/Siratioof1:1andaformulaofNa12(SiO2∙AO2)12∙27H2O.Itactsasa builderbyexchangingsodiumionsinsidethelatticewithcalciumionsfromthe washwater.Zeolitesarenoteffectiveinprovidingalkalinityandarenormally usedinconjunctionwithcarbonates.Theyareinsolubleinwaterandare thereforenotsuitableforformulatingunstructuredliquids.Instructuredliquids, zeolitesaresuspendedassolidparticles. (b)Organic.Therestrictionsplacedontheuseofphosphatecompoundsin detergentformulationshaveledtoavarietyoforganiccompoundsthatcould functionasbuildersbutmustalsobereadilybiodegradable.Althoughsomeof thesecompoundsdoapproachthesequestrationlevelofphosphates,theyare notascost­effective[85]. Variouspolycarboxylatecompounds,thosewithatleastthreecarboxylate groups,havenowbecomewidelyusedasreplacementsforphosphatesasthe buildercomponentofHDLDs.Inliquiddetergentformulations,citrate compoundshavebecomecommonplace.Thoughtheirchelatingabilityis relativelylow(Fig.14),citratecompoundsareusedinHDLDsforavarietyof reasons.Citrate'shighaqueoussolubilitymakesitusefulinunstructuredliquids, whereasinstructuredliquidsitshighelectrolyticstrengthcanaidinsaltingout andstabilizingtheformulation.Inaddition,itisusedinenzyme­containing formulationswheremaintenanceofthepHatlessthan 9.0iscrucialtothe stabilityoftheenzyme.Citricaciditselfhasalsobeenpatentedasaningredient inproteasestabilizationsystems[87]. Etherpolycarboxylateshavebeendeterminedtoprovideimprovementsover thecalcium­andmagnesium­chelatingabilityofcitrates.Inaseriesofpatents assignedtoProcter&Gamble,ithasbeenclaimedthatacombinationof tartratemonosuccinatesandtartratedisuccinates(Fig.15)deliversexcellent chelatingperformance[88–90].DatashowninFig.16indicateahighlevelof calcium­bindingcapacity. Saltsofpolyaceticacids,e.g.,ethylenediaminetetraaceticacid(EDTA)and nitrilotriaceticacid(NTA),havelongbeenknowntobeveryeffectivechelating agents[91].ThechelatingabilityofNTAhasbeenfoundtobecomparableto thatofTPP.Unfortunately,questionsregardingthetoxicityofthiscompound haveallbutpreventedanylarge­scaleuseinHDLDs.Currently,NTAusageis primarilylimitedtoafewpowderformulationsinCanada.Thehighchela­

Page288

FIG.14 Sequestrationofwaterhardnessionsbydetergent builders.( )SodiumpolyacrylateM w=170,000;( ) STPP;(

)NTA;(

)EDTA;(

)sodiumcitrate;(

)

CMOS;( )sodiumcarbonate;( )zeoliteA. (ReproducedwithpermissionfromRef.86.)

FIG.15 Etherpolycarboxylatebuilders.

Page289

FIG.16 Effectofbuilderleveloncalciumionconcentration.(From Ref.89.)CMOS,sodiumcarboxymethoxysuccinate;ODS, sodiumoxydisuccinate;STP,sodiumtripolyphosphate; TMS,tartratemonosuccinate;TDS,tartratedisuccinate.

tionpowerofEDTAhasbeenusedincompositionswheremetalimpuritiesof ironandcoppercanbedetrimentaltotheproductstability,as,forexample,in peroxidebleach­containingliquids. Polymericpolyelectrolyteshavealsofoundapplicationsasbuilderingredients [92,93].Highmolecularweightpolyacrylatesandacrylicmaleiccopolymers canbeveryeffectiveintyingupcalciumionsinthewash(Fig.17).However, concernsabouttheirbiodegradabilityandaqueoussolubilityhavesignificantly limitedtheiruseinliquidformulations.Thesepolymersystemscanalsoaidin soildispersionandinantiredeposition.Inproductscontainingcarbonates,these polymerscandisruptcalciumcarbonatecrystalliteformationandasaresult preventencrustationonclothes. Fattyacidssuchasoleicandcocofattyacid(saturationlevel)addedto HDLDscanserveamultifunctionalrole.Thoughtheyprimarilyprovideafoam suppressioncapability,theycanalsoprecipitateoutsomeofthecalciumionsin thewashbyformingcalciumsoap.Thiscould,however,poseaproblem becausesoapscumisinsolubleandmayimpacttheoverallcleaningresult. C.Enzymes Enzymeshavebecomeintegralcomponentsofmostliquiddetergent compositionsastheycontinuetoplayanincreasinglylargerroleinthestain removal

Page290

FIG.17 Sequestrationofwaterhardnessionsbysodium polyacrylatepolymers.( ( (

)M w=2100;(

)M w=5100; )M w=20,000;( )M w=60,000;( )M w=170,000, )M =240,000.(Reproducedwithpermissionfrom w

Ref.86.)

process.Thishascomeaboutbecauseofmanyrecentadvancesinenzyme technologyandhasresultedinmoreefficientandeffectivestrains.Theabilityof theseenzymestotargetspecificclassesofstainscanprovidetheformulator withtheflexibilitytotailorthedevelopmentofproductsforconsumerswith differentrequirementsandpreferences.Inaddition,enzymesareespecially effectivewhentheliquiddetergentisusedasaprespotter. TherearefourtypesofenzymescurrentlybeingusedinHDLDs:protease, lipase,cellulase,andamylase[6,94].Theyareallproteinsandarederived fromvariouslivingorganisms.Theirroleistocatalyzethehydrolysisoflarge biologicalmoleculesintosmallerunitsthataremoresolubleandasaresultare washedawayrelativelyeasily.Theoptimumconditionsforthefunctioningof theseenzymesdependonindividualstrainsortypes.Generally,theratesof theseenzymaticreactionsrisewithincreasingtemperaturesandareusually optimumwithinanalkalinepHrangeof9–11.

Page291

Proteasesarebyfarthemostwidelyusedofalldetergentenzymes.Introduced inthe1960s,theyhavesincebecomeoneofthemoreimportantcomponents ofthedetergentformulation[6].Proteasesaidintheremovalofmanysoils commonlyencounteredbytheconsumersuchasfoodstains,blood,andgrass. Theseenzymeshydrolyzeorbreakupthepeptidebondsfoundinproteins, resultingintheformationofsmallerandmoresolublepolypeptidesandamino acids.SincemostenzymeshavetofunctionathighpHconditions,subtilisin,a bacterialalkalineprotease,iscommonlyusedinlaundrydetergents.This particularproteasedoesnothydrolyzeanyspecificpeptidebondinthe proteinaceousstainbutcleavesbondsinasomewhatrandommanner. Amylaseenzymesworkonfoodstainsofthestarchyvariety,likerice, spaghettisauce,andgravy.Theseenzymeshydrolyzethe1–4­glucosidic bondsinstarch,whichleadstotheformationofsmallerwater­soluble molecules. ­Amylaserandomlyhydrolyzesthebondsinthestarchpolymerto formdextrinmolecules. ­Amylase,ontheotherhand,cleavesthemaltose unitsthataresituatedattheendofthestarchpolymer. Theuseoflipasesindetergentsisarelativelyrecentoccurrence.Thefirst commercialdetergentlipasewasintroducedin1988[(6,94].Theseenzymes targettheoily/greasystainsthataresomeofthemostdifficultstainstoremove. Themajorcomponentsofmostoilystainsencounteredinhouseholdsare triglycerides.LipasescatalyzethehydrolysisofmostlytheC1andC3bondsin thetriglyceridemolecule,yieldingsolublefreefattyacidsanddiglyceride(Fig. 18).Inpractice,ithasbeendeterminedthatlipasesworkbestsubsequentto thefirstwash(Fig.19).Itisbelievedthatthetemperaturesencounteredina typicaldryingprocessareneededtoactivatetheenzyme.Thoughmostoily stainscanalsobecleanedusingtraditionalsurfactantmethods,themainbenefit oflipasesistheirabilitytoperformatrelativelylowconcentrationsandlow temperatures. Withgreateremphasisgiventothecareofthefabric,cellulaseenzymeshave becomeincreasinglyimportantindetergentproducts[94].Repeatedwashing oftenleadstocottonfabricslookingfadedandworn.Thisappearanceis attributedtothedamagedcellulosemicrofibrilsonthefabricsurface.Cellulase en­

FIG.18 Lipase­catalyzedconversionofinsolubleoily(triglyceride)soils.

Page292

FIG.19 Effectoflipaseenzyme(Lipolase)onlard/SudanRedstainsasa functionofthenumberofwashcycles.Conditions:Powder detergent,temp30°C,Terg­o­tometer,pH9.7.(Reproducedwith permissionfromRef.6.)

zymesareabletohydrolyzethe (1–4)bondsalongthecellulosepolymer, resultinginsmallerunitsthatarecarriedawayinthewash(Fig.20).The removalofthesedamagedmicrofibrilsorpillinggivestheclothingalessfaded appearance(Fig.21).

FIG.20 Hydrolysisofcellulosefibersbycellulaseenzyme.

Page293

FIG.21 Effectofcellulaseonthecolorclarityandpillingtendencyofa cottonfabric.Europeanmachineat40°Cusinganewblack cottonfabric.(ReproducedwithpermissionfromRef.6.)

1.EnzymeStabilization Enzymesarehighlysusceptibletodegradationinheavydutylaundryliquids. Withincreasingemphasisontheuseofenzymesascleaningagents,itbecomes allthemoreimportantthattheseenzymesbeprotectedagainstpremature degradationoratleastmaintaintheirperformancethroughouttheshelflifeof theproduct. ManyfactorscontributetothedenaturationoftheenzymesinHDLDs.They includefreewater,alkalinity,bleaches,andcalciumionconcentration.The presenceoffreewaterintheformulationisamajorcauseofenzyme degradation.Thisprocessisgreatlyacceleratedatincreasinglyalkaline conditions.Generally,enzyme­containingcommercialHDLDsaremaintained withinapHrangeof7–9(Fig.22).However,thisconstraintcanaffectthe detergency,asmostenzymesattaintheiroptimumefficacyatpHrangesof9– 11.Certainadditionalingredients,especiallybleaches,canalsohaveamajor detrimentaleffectonenzymestability. Itisbelievedthatingredientsthatarecapableofdeprivingtheenzyme'sactive siteofcalciumionsaredetrimentaltoenzymestability.Itishypothesizedthat calciumionsbindatthebendsofthepolypeptidechain,resultinginastifferand morecompactmolecule[96–98].Buildersandsurfactantsthathaveaffinities towardcalciumionsareexamplesofsuchingredients.Thedegreeofstability alsovariesgreatlywiththetypeofsurfactantorbuilderused.Linear alkylbenzenesulfonateandalkylsulfatesurfactantshavebeenfoundtobe moredetrimentaltoenzymesthanalcoholethoxylatesoralkylethersulfates [95].The

Page294

FIG.22 EffectofproductpHonproteasestabilityinanHDLDcontaining alcoholethoxylateandalcoholethoxysulfates.(Reproducedwith permissionfromRef.95.)

degreeofethoxylationalsoaffectsthestatusoftheenzyme.Inethersulfates, improvedstabilityisobservedwithincreasingEOgroupsuptofivetoseven EOgroups[96].LASismorelikelytobindwiththecalciumionsinthe productthanothermorehardness­tolerantsurfactantssuchasalkylether sulfatesorthenonionicalcoholethoxylatesurfactants.Thishasbeen consideredapossiblecauseoffasterenzymedegradationinLAS­containing HDLDs(Fig.23).Similarly,informulationswithbuildersorchelants,additional calciumissometimesaddedtoshifttheequilibriumtofavortheenzyme'sactive sitesandpreventprematuredeactivation. Othermechanismsforenzymedenaturationinthepresenceofsurfactantshave alsobeenproposed.Onehypothesisisthatthehighchargedensitiesofthe ionicsurfactantsincreasetheprobabilityoftheirbindingstronglyontoprotein sites.Thiscausesconformationalchangesoftheenzyme,whichsubsequently leadtofurtherenzymedeactivation[95,99]. Thetaskofstabilizingenzymesisfurthercomplicatedbythefactthat increasinglyHDLDformulationscontainmorethanoneenzyme(e.g.,protease, lipase,andcellulase)system.Insuchsystems,notonlydotheenzymeshaveto beprotectedagainstdenaturation,butalsoenzymessuchaslipaseand cellulase,whicharethemselvesproteins,havetobeshieldedfromthe protease.

Page295

FIG.23 Effectofsurfactanttypeonproteasestability.AE,Alcoholethoxylate; AE25­3S,Alcoholethoxysulfate;LAS,linearalkylbenzenesulfonate. (ReproducedwithpermissionfromRef.95.)

(a)Protease­OnlyHDLDs.Allstabilizationsystemsfunctioneitherbybinding totheactivesiteoftheenzymeorbyalteringtheequilibriaoftheformulationto favorthestableactivesites.Thesystemiseffectiveinprotectingtheenzyme onlyifthestabilizingmoleculebindsstronglytotheenzymewhileina formulationbuteasilydissociatesfromtheenzyme'sactivesiteswhenit encountersthediluteconditionsinthewash. LettonandYunker[100]andKaminskyandChristy[101]describeprotease stabilizationsystemscomposedofacombinationofacalciumsaltandasaltof acarboxylicacid,preferablyaformate.Theseingredientsaremoderately effectiveinenzymestabilizationandarerelativelyinexpensive.Carehastobe taken,however,whenaddingdivalentionssuchascalciumtoHDLDsto preventthepossibilityofprecipitation. Animprovementoverthisearliersystemwasattainedwiththeadditionof boroncompoundssuchasboricacidorboratesalts[102–104].Ithasbeen hypothesizedthatboricacidandcalciumformintramolecularbondsthat effectivelycross­linkorstapleanenzymemoleculetogether[103,104].The useofpolyolssuchaspropyleneglycol,glycerol,andsorbitolinconjunction withtheboricacidsaltshasfurtherenhancedthestabilityoftheseenzymes [105–107].

Page296

Thepatentartcontainsnumerousexamplesofenzymestabilizationsystemsthat useborates,polyols,carboxylatesalts,calcium,andethanolaminesor combinationsthereof[87,108–111]. (b)MixedEnzymeHDLDs.InHDLDformulationswithadditionalenzymes besidesprotease,itbecomesincreasinglydifficulttostabilizealltheenzymes. Amylases,lipases,andcellulasesarethemselvesproteinsandhenceare susceptibletoattackfromtheprotease.Variousapproachestostabilizinga mixedenzymesystemhavebeendocumentedinthepatentliterature.One approachattemptstoextendthestabilizationtechniquesdevelopedtostabilize protease­onlyformulationsandapplythemtomixedenzymeliquids[112– 114]. Compoundsthatbindevenmoretightlytotheproteaseactivesitesandasa resultinhibitthisenzyme'sactivityintheproductduringshelfstoragehavebeen identified.However,thismethodiseffectiveonlyiftheenzymeinhibitioncanbe reversedunderthediluteconditionsofthewashwater.Variousboronicacids [115–119](e.g.,arylboronicacidsand ­aminoboronicacids),peptide aldehyde[120],peptideketone[121],andaromaticborateester[122] compoundshavebeenfoundthatdeliverthistypeofperformance.Itis believedthatboronicacidsinhibitproteolyticenzymebyattachingthemselves attheactivesite.Aboron­serinecovalentbondandahydrogenbondbetween histidineandahydroxylgroupontheboronicacidapparentlyareformed [118].Thepatentliteraturealsodescribesmethodsofstabilizingthecellulase enzymesinmixedenzymesystemswithhydrophobicaminecompoundssuch ascyclo­hexylamineandn­hexylamine[123]. Recently,alternativemethodshavealsobeendevelopedtostabilizethese complexenzymesystems.Thetechniqueofmicroencapsulation[124]is designedtophysicallypreventtheproteaseenzymefrominteractingwiththe otherenzymes(Fig.24).Thisisaccomplishedbyacompositeemulsion polymer

FIG.24 Enzymemicroencapsulation.(Reproducedwithpermission fromRef.6.)

Page297

systemthathasahydrophilicportionattachedtoahydrophobiccorepolymer. Theproteaseisstabilizedbytrappingitwithinanetworkformedbythe hydrophobicpolymer. D.Bleaches Bleachesplayasignificantroleindetergentformulationsbecausetheycan affectcleaningefficacy,whichiseasilyperceivedbyconsumers.Bleaching actioninvolvesthewhiteningorlighteningofstainsbythechemicalremovalof color.Bleachingagentschemicallydestroyormodifychromophobicsystems anddegradedyecompounds,resultinginsmallerandmorewater­soluble moleculesthatareeasilyremovedinthewash.Typicalbleach­sensitivestains includefood,coffee,tea,fruits,andsomeparticulatesoils.Bleachescanalso aidinminimizing“dinginess,”whichgivesclothesagrayoryellowtintcaused byacombinationoffabricfiberdamageanddirtbuildup. Therearetwotypesofbleachesusedinthelaundryprocess:hypochloriteand peroxygenbleaches.Althoughhypochloritebleachesbythemselvesare effectivebleaches,theyleadtocolorfadingandfabricdamageandaredifficult toincorporateintodetergentformulations.Peroxygenbleaches,ontheother hand,thoughnotaseffective,canbeformulatedintodetergentsandcause minimalcolorfadingorfabricdamage.Theyalsobleachoutfoodstainsasthe chromophoresfoundinthesestainsaresusceptibletoperoxidebleaches. Fabricdyes,however,arenotasactiveasfooddyesandarethereforenot easilyaffectedbytheperoxygencompounds. Mostdetergentswithbleachformulationsareinthepowderform. Unfortunately,theaqueousnatureoftheHDLDsdoesnoteasilypermitthe formulationofbleachcomponents.Thisisespeciallytrueinunstructured liquids,wherethestabilityoftheperoxygencomponentsisseverely compromised.Nevertheless,attemptshavebeenmadetoproduceHDLDs thatalsocontainbleaches. 1.PeroxygenBleaches Detergentformulationscontainingperoxidebleachcontaineitherhydrogen peroxideorcompoundsthatreacttoformhydrogenperoxideinthewash.The mostdirectsourceforperoxidebleachingishydrogenperoxide.Numerous attemptshavebeenmadetodevelopstableHDLDscontaininghydrogen peroxide[125–127].Thestabilityofthisingredientinaqueousformulations, however,isofconcern.Hydrogenperoxideisverysusceptibleto decompositioninaqueousenvironments,largelybecausetraceimpuritiesof metalionssuchasiron,manganese,andcoppercancatalyzeitsdecomposition [128].Alkalinityalsoacceleratesthisprocess.ForthesereasonsHDLDs containinghydrogenperoxidearemaintainedatanacidicpHandusuallyalso containastrongchelatingagenttosequestermetalions.Afreeradical scavengerisalsosometimes

Page298

addedtofurtherenhancestability.Polyphosphonatecompoundsandbutylated hydroxytoluene(BHT)areexamplesofchelatingagentsandfreeradical scavengers,respectively,thatareusedinhydrogenperoxide­containing formulations[129].Still,thebleachingperformanceoftheseproductsis inadequate,especiallyatlowtemperatures.Theselimitationshaveprompted manufacturerstolooktoothermethodstodevelopbleachHDLDs. Inorganicperoxygencompoundssuchassodiumperboratetetrahydrateor monohydrateandsodiumpercarbonatecanalsobeusedassourcesof hydrogenperoxide.Theseinsolublecompoundsreleasehydrogenperoxideon contactwiththewashwater.ThechallengeistostabilizethemwithinanHDLD formulation.Theabilityofstructuredliquidstosuspendsolidsbetweenthe surfactantlamellaeorspherulitescanbemadeuseofintheseproducts[130– 133].Itispossibletosuspendsodiumperborateinhighlyconcentrated structuredliquids.Theminimizationofcontactwithwaterpreventsthe peroxygencompoundsfromdecomposingprematurely.Ithasalsobeenfound thattheuseofsolventsfurtherimprovestheirstability[134].Hydrophobic silicacanenhancestabilityinunstructuredliquids[135].Themosteffective methodofformulatingwithperboratesandpercarbonatesiswithnonaqueous liquids.Thecompleteabsenceofwaterandahighlevelofsolventssignificantly enhancethestabilityofbleachesintheproduct. 2.PeracidandActivatedPeroxygenBleaches Peroxycarboxylicacidsorperacidsarefarmoreeffectivebleaching compoundsthanperoxygenmolecules,especiallyatlowandambient temperatures.Thehighreactivityandlowstabilityofthesecompoundshaveso farpreventedthemfrombeingusedincommercialdetergentbleach formulations.PeracidsaresomewhatstableinaqueoussolutionsofneutralpH, andtheyequilibratewithwaterintheacidpHrangetoformhydrogenperoxide andcarboxylicacids.However,inalkalineconditionsthesecompounds undergoaccelerateddecomposition.Nevertheless,attemptshavebeenmade todevelopHDLDsthattakeadvantageofthe

Liquid Detergents (Surfactant Science Series) - PDF Free Download (2024)
Top Articles
Erin Burnett OutFront : CNNW : August 9, 2024 4:00pm-5:00pm PDT : Free Borrow & Streaming : Internet Archive
Live coverage: Debby now a tropical depression; 35 mph winds still expected
Spasa Parish
12 Rue Gotlib 21St Arrondissem*nt
These Walls Have Eyes Walkthrough - The Casting of Frank Stone Guide - IGN
William G. Nolan - Baker Swan Funeral Home
Het Musculoskeletal Clinical Translation Framework - FysioLearning
Csuf Mail
4808460530
Supreme Source Dog Food Walmart
Press And Sun-Bulletin Obits Today
Immobiliare di Felice| Appartamento | Appartamento in vendita Porto San
911 Active Calls Caddo
Ohio Lottery Full Site
Sirius Mlb Baseball
His Words Any Sense Figgerits
Paul Mccombs Nashville Tn
Childersburg Busted Mugshots
Robertos Pizza Penbrook
Chester Farmers Market vendor Daddy's a Hooker: Ed Lowery happy fiber artist for 65 years
Get Got Lyrics
NEU: LEAKSHIELD - das sicherste Flüssigkeits-Kühlsystem der Welt - Wasserkühlung
Sour Animal Strain Leafly
Okay Backhouse Mike Lyrics
Nancy Pazelt Obituary
Cherry Crush Webtoon Summary
Dimbleby Funeral Home
Ups Access Point Location Georgetown Photos
Math Nation Algebra 2 Practice Book Answer Key
Starlight River Multiplayer
Guide:How to make WvW Legendary Armor
Realidades 2 Workbook Answer Key
Altametrics Login Little Caesars
Craigslist.nashville
Virtualrewardcenter.com/Activate
15 Best HDMovie2 Alternatives to Watch Movies in Hindi & Other Indian Languages Online Free Leawo Tutorial Center
Work with us | Pirelli
Language levels - Dutch B1 / 2 –What do these language levels mean? - Learn Dutch Online
Slim Thug’s Wealth and Wellness: A Journey Beyond Music
Petco Clinic Hours
7066642123
Osceola County Addresses Growth with Updated Mobility Fees
Rexella Van Impe Net Worth
Usm.instructure
The Untold Truth Of 'Counting Cars' Star - Danny Koker
Chars Boudoir
Splunk Stats Count By Hour
Dr Ommert Norwalk Ohio
Lavender Dreams Nails Walnut Creek Photos
October 31St Weather
Rune Factory 5 Dual Blade Recipes
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 5581

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.